A Construction That Produces Wallis-Type Formulas

Show more

References

[1] S. J. Miller, “A Probabilistic Proof of Wallis’s Formula for π,” The American Mathematical Monthly, Vol. 115, No. 8, 2008, pp. 740-745.

[2] J. Wastlund, “An Elementary Proof of the Wallis Product Formula for Pi,” The American Mathematical Monthly, Vol. 114, No. 10, 2007, pp. 914-917.

[3] G. Myerson, “The Limiting Shape of a Sequence of Rectangles,” The American Mathematical Monthly, Vol. 99, No. 3, 1992, pp. 279-280. doi:10.2307/2325077

[4] L. Short, “Some Generalizations of the Wallis Product,” International Journal of Mathematical Education in Science and Technology, Vol. 23, No. 5, 1992, pp. 695-707.
doi:10.1080/0020739920230508

[5] L. Short and J. P. Melville, “An Unexpected Appearance of Pi,” Mathematical Spectrum, Vol. 25, No. 3, 1993, pp. 65-70.

[6] G. K. Srinivasan, “The Gamma Function: An Eclectic Tour,” The American Mathematical Monthly, Vol. 114, No. 4, 2007, pp. 297-315.

[7] E. T. Whittaker and G. N. Watson, “A Course in Modern Analysis,” 3rd Edition, Cambridge University Press, Cambridge, 1920.

[8] T. M. Apostol, “Mathematical Analysis,” Addison-Wesley, Reading, 1957.

[9] T. J. Bromwich, “An Introduction to the Theory of Infinite Series,” 2nd Edition Revised, Macmillan, London, 1926.

[10] A. C. Thompson, “Minkowski Geometry,” Cambridge University Press, Cambridge, 1996.
doi:10.1017/CBO9781107325845