[1] Turner, N.J. (2003) Controlling chirality. Current Opinion in Biotechnology, 14, 401-406. doi:10.1016/S0958-1669(03)00093-4
[2] Huisman, G. and Gray, D. (2002) Towards novel processes for the fine chemical and pharmaceutical industries. Current Opinion in Biotechnology, 13, 352-358. doi:10.1016/S0958-1669(02)00335-X
[3] Patel, R.N. (2001) Biocatalytic synthesis of intermediates for the synthesis of chiral drug substances. Current Opinion in Biotechnology, 12, 587-604. doi:10.1016/S0958-1669(01)00266-X
[4] Loughlin, W.A. (2000) Biotransformations in organic synthesis. Bioresource Technology, 74, 49-62. doi:10.1016/S0960-8524(99)00145-5
[5] Yadav, G.D. and Devi, K.M. (2002) Enzymatic synthesis of perlauric acid using Novozym 435. Biochemical Engineering Journal, 10, 93-101. doi:10.1016/S1369-703X(01)00164-4
[6] Yadav, G.D. and Borkar, I.V. (2006) Kinetic modeling of microwave assisted chemo-enzymatic epoxidation of styrene to styrene oxide. American Institute of Chemical Engineers Journal, 52, 1235-1247. doi:10.1002/aic.10700
[7] Yadav, G.D. and Devi, K.M. (2004) Kinetics of hydrolysis of tetrahydrofurfuryl butyrate in a three phase system containing immobilized lipase from Candida antartica. Biochemical Engineering Journal, 17, 57-63. doi:10.1016/S1369-703X(03)00125-6
[8] Yadav, G.D. and Devi, K.M. (2004) Immobilized lipasecatalyzed esterification and transesterification reactions in non-aqueous media for synthesis of tetrahydrofurfuryl butyrate: Comparison and kinetic modelling. Chemical Engineering Science, 59, 373-383. doi:10.1016/j.ces.2003.09.034
[9] Yadav, G.D. and Lathi, P.S. (2006) Intensification of enzymatic synthesis of propylene glycol monolaurate from 1,2-propanediol and lauric acid under microwave irradiation: Kinetics of forward and reverse reactions, Enzyme and Microbial Technology, 38, 814-820.
doi:10.1016/j.enzmictec.2005.08.013
[10] Yadav, G.D. and Dhoot, S.B. (2009) Immobilized lipasecatalysed synthesis of cinnamyl laurate in non-aqueous media. Journal of Molecular Catalysis B: Enzymatic, 57, 34-39.
doi:10.1016/j.molcatb.2008.06.013
[11] Yadav, G.D. and Jadhav, S.R. (2005) Synthesis of reusable lipases by immobilization on hexagonal mesoporous silica and encapsulation in calcium alginate: Transesterification in non-aqueous medium. Microporous and Mesoporous Materials, 86, 215-222. doi:10.1016/j.micromeso.2005.07.018
[12] Yadav, G.D. and Devendran, S. (2012) Lipase catalyzed synthesis of cinnamyl acetate via transesterification in non-aqueous medium. Process Biochemistry, 47, 496-502.
doi:10.1016/j.procbio.2011.12.008
[13] Yadav, G.D. and Borkar, I.V. (2008) Kinetic modeling of immobilized lipase catalysis in synthesis of n-butyl levulinate. Industrial and Engineering Chemistry Research, 47, 3358-3363.
doi:10.1021/ie800193f
[14] Yadav, G.D. and Borkar, I.V. (2009) Novelties of synthesis of n-butyl acetamide over immobilized lipase. Journal of Chemical Technology and Biotechnology, 84, 420-426. doi:10.1002/jctb.2056
[15] Yadav, G.D. and Borkar, I.V. (2010) Lipase-catalyzed hydrazinolysis of phenyl benzoate: Kinetic modeling approach. Process Biochemistry, 45, 586-592. doi:10.1016/j.procbio.2009.12.005
[16] Yadav, G.D. and Borkar, I.V. (2009) Kinetic and mechanistic investigation of microwave-assisted lipase catalyzed synthesis of citronellyl acetate. Industrial and Engineering Chemistry Research, 48, 7915-7922. doi:10.1021/ie800591c
[17] Yadav, G.D., Dhoot, S.B. and Sajgure, A.D. (2008) Insight into microwave irradiation and enzyme catalysis in enantioselective resolution of RS-(±)methyl mandelate. Journal of Chemical Technology and Biotechnology, 83, 1145-1153. doi:10.1002/jctb.1975
[18] Yadav, G.D. and Thorat, P.A. (2012) Microwave assisted lipase catalyzed synthesis of isoamyl myristate in solvent-free system. Journal of Molecular Catalysis B: Enzymatic, 83, 16-22. doi:10.1016/j.molcatb.2012.06.011
[19] Yadav, G.D. and Shinde, S.D. (2012) Synergism of microwave irradiation and immobilized lipase catalysis in synthesis of 4,8-dimethylnon-7-en-1yl (2E)-3-phenylpro2-enolate. International Reviews in Chemical Engineering, 4, 589-596.
[20] Yadav, G.D. and Pawar, S.V. (2012) Synergism between microwave irradiation and enzyme catalysis in trans-esterification of ethyl-3-phenylpropanoate withn-butanol. Bioresource Technology, 109, 1-6. doi:10.1016/j.biortech.2012.01.030
[21] Yadav, G.D., Sajgure, A.D. and Dhoot, S.D. (2007) Enzyme catalysis in fine chemical and pharmaceutical industries. In: Bhattacharya, S.K., Ed., Enzyme Mixtures and Complex Biosynthesis, Landes Biosciences, Austin.
[22] Riermeier, T.H., Gross, P., Monsees, A., Hoff, M. and Trauthwein, H. (2005) Dynamic kinetic resolution of secondary alcohols with a readily available rutheniumbased racemization catalyst. Tetrahedron Letters, 46, 34033406. doi:10.1016/j.tetlet.2005.03.074
[23] Cong, F.D., Wang, Y.H., Ma, C.Y., Yub, H.F., Han, S.P., Tao, J. and Cao, S.G. (2005) A way for resolution of (R, S)-2-octanol by combining dynamic kinetic resolution with double kinetic resolution. Enzyme and Microbial Technology, 36, 595-599. doi:10.1016/j.enzmictec.2004.12.009
[24] Yu, D., Chen, P., Wang, L., Gu, Q., Li, Y., Wang, Z. and Cao, S. (2007) A chemo-enzymatic process for sequential kinetic resolution of (R,S)-2-octanol under microwave irradiation. Process Biochemistry, 42, 1312-1318. doi:10.1016/j.procbio.2007.06.011
[25] Wang, Y., Wang, R., Li, Q., Zhanga, Z. and Feng, Y. (2009) Kinetic resolution of rac-alkyl alcohols via lipase-catalyzed enantioselective acylation using succinic anhydride as acylating agent. Journal of Molecular Catalysis B: Enzymatic, 56, 142-145. doi:10.1016/j.molcatb.2008.02.002
[26] Xun, E.N., Lv, X.L., Kang, W., Wang, J.X., Zhang, H., Wang, L. and Wang, Z. (2012) Immobilization of pseudomonas fluorescens lipase onto magnetic nanoparticles for resolution of 2-octanol. Applied Biochemistry Biotechnology, 168, 697-707. doi:10.1007/s12010-012-9810-9
[27] Ren, L., Xu, T., He, R., Jiang, Z., Zhou, H. and Wei, P. (2013) A green resolution-separation process for aliphatic secondary alcohols. Tetrahedron: Asymmetry, 24, 249253.
doi:10.1016/j.tetasy.2013.01.018
[28] Zhao, L.F. and Zheng, L.Y. (2011) Resolution of 2-octanol via immobilized Pseudomonas sp. lipase in organic medium. Biocatalysis and Biotransforamtion, 29, 47-53. doi:10.3109/10242422.2010.551189
[29] Yu, D., Ma, D., Wang, Z., Wang, Y., Pan, Y. and Fang, X. (2012) Microwave-assisted enzymatic resolution of (R,S)2-octanol in ionic liquid. Process Biochemistry, 47, 479484.
doi:10.1016/j.procbio.2011.12.007
[30] Wang, Y., Li, Q., Zhang, Z., Ma, J. and Feng, Y. (2009) Solvent effects on the enantioselectivity of the thermophilic lipase QLM in the resolution of (R,S)-2-octanol and (R,S)-2-pentanol. Journal of Molecular Catalysis B: Enzymatic, 56, 146-150. doi:10.1016/j.molcatb.2008.01.010
[31] Ursoiu, A., Ungurean, M., Paul, C. and Peter, F. (2010) Optimization of 2-octanol kinetic resolution by selection of solgel immobilization precursors and reaction parameters. Journal of Biotechnology, 150S, S1-S576. doi:10.1016/j.jbiotec.2010.09.493
[32] Bas, D. and Boyaci, I.H. (2007) Modeling and optimization I: Usability of response surface methodology. Journal of Food Engineering, 78, 836-845. doi:10.1016/j.jfoodeng.2005.11.024
[33] Soto-Cruz, O., Saucedo-Castaneda, G., Pablos-Hach, J.L., Gutiérrez-Rojas, M. and Favela-Torres, E. (1999) Effect of substrate composition on the mycelial growth of Pleurotus ostreatus. An analysis by mixture and response surface Methodologies Process Biochemistry, 35, 127-133.
doi:10.1016/S0032-9592(99)00043-6
[34] Diniz, F.M. and Martin, A.M. (1996) Use of response surface methodology to describe the combined effects of temperature and E:S ratio on the hydrolysis of dogfish (Squalus acanthias) muscle. International Journal of Food Science and Technology, 31, 419-426. doi:10.1046/j.1365-2621.1996.00351.x
[35] Guinard, J.X., Zoumas-Morse, C., Mori, L., Panyam, D. and Kilara, A. (1996) Effect of sugar and fat on the acceptability of vanilla ice cream. Journal of Dairy Science and Technology, 79, 1922-1927. doi:10.3168/jds.S0022-0302(96)76561-X
[36] Hwang, S. and Hancen, C.L. (1997) Modeling and optimization in anaerobic bioconversion of complex substrates to acetic and butyric acids. Biotechnology and Bioengineering, 54, 451-460. doi:10.1002/(SICI)1097-0290(19970605)54:5<451::AID-BIT5>3.0.CO;2-D
[37] Rastogi, N.K., Rajesh, G. and Shamala, T.R. (1998) Optimization of enzymatic degradation of coconut residue. Journal of Science Food Agriculture, 76, 129-134.
doi:10.1002/(SICI)1097-0010(199801)76:1<129::AID-JSFA909>3.0.CO;2-C
[38] Gokhale, S.V. and Lele, S.S. (2012) Optimization of convective dehydration of Beta vulgaris for color retention. Food and Bioprocess Technology, 5, 868-878.
[39] Mahajan, P.M., Gokhale, S.V. and Lele, S.S. (2010) Production of nattokinase using Bacillus natto NRRL 3666: Media optimization, scale up and kinetic modeling. Food Science Biotechnolology, 19, 1593-1603. doi:10.1007/s10068-010-0226-4
[40] Sontakke, J.B. and Yadav, G.D. (2011) Optimization and kinetic modeling of lipase catalyzed enantioselective N-acetylation of (±)-1-phenylethylamine under microwaves irradiation. Journal of Chemical Technology and Biotechnology, 86, 739-748. doi:10.1002/jctb.2582
[41] Sontakke, J.B. and Yadav, G.D. (2011) Kinetic modeling and statistical optimization of lipase catalyzed enantioselective resolution of (R,S)-2-pentanol. Industry Engineering and Chemistry Research, 50, 12975-12983. doi:10.1021/ie2012032
[42] Yadav, G.D. and Sontakke, J.B. (2011) Optimization of chiral resolution of (R,S)-1-phenylethanol by statistical methods. International Journal of Chemical Reactor Engineering, 9, A77, 1-15.
[43] Dai, D.Z. and Xia, L.M. (2006) Resolution of (R,S)-2octanol by Penicillium expansum PED-03 lipase immobilized on modified ultrastable-Y molecular sieve in microaqueous media. Process Biochemistry, 41, 1455-1460. doi:10.1016/j.procbio.2006.01.015
[44] Zhang, D.H., Bai, S., Ren, M.Y. and Sun, Y. (2008) Optimization of lipase-catalyzed enantioselective esterification of (±)-menthol in ionic liquid. Food Chemistry, 109, 72-80.
doi:10.1016/j.foodchem.2007.12.020
[45] Montgomery, D.C. (1984) Design and analysis of experiments. 2nd edition, John Wiley and Sons, New York.
[46] Faber, K. and Riva, S. (1992) Enzyme-catalyzed ireversible acyl transfer. Synthesis, 10, 895-910. doi:10.1055/s-1992-26255
[47] Rizzi, M., Stylos, P. and Reuss, M. (1992) A kinetic study of immobilized lipase catalysing the synthesis of isoamyl acetate by transesterification in n-hexane. Enzyme Microbial Technology, 14, 709-714. doi:10.1016/0141-0229(92)90110-A
[48] Segel, I.H. (1975) Enzyme kinetics. Wiley/Interscience, New York.