OJMIP  Vol.3 No.3 , August 2013
Novel genomic biomarkers for acute gentamicin nephrotoxicity in dog
Abstract: Objectives: Novel biomarkers indicative of drug-induced kidney injury (DIKI) in dogs would have significant application in preclinical drug development. We conducted a feasibility study to identify genomic expression profiles for monitoring progressive, acute DIKI in dogs. Materials and Methods: Animals were intramuscularly administered either 0.9% physiological saline or gentamicin (40 mg/kg/day) for 10 consecutive days and euthanized on day 11. Serum and urine samples were collected at various time points and kidney samples were collected at necropsy for biomarker measurements. Results: Acute gentamicin-induced renal histopathology changes were localized to the proximal convoluted tubules and characterized as slight-to-marked, diffuse cortical-medullary tubular epithelial degeneration/necrosis. Serum creatinine (sCr) and blood urea nitrogen (BUN) elevations suggestive of mild renal dysfunction were first observed on days 7 to 8. Gentamicin-induced increased urinary kidney injury molecule-1 (KIM-1) mRNA was observed on day 6 preceding detectable elevations of sCr and/or BUN. Increased urinary KIM-1 mRNA correlated with multifocal KIM-1 immunostaining in the corticomedullary tubular epithelial cells. Microarray analysis revealed changes in additional mRNA expression products detected in urine and/or kidney that should be further investigated for use as potential biomarkers for acute gentamicin related nephrotoxicity in dogs. Conclusion: These findings suggested the utility of non-invasive urinary genomic parameters for monitoring acute DIKI in dogs.
Cite this paper: McDuffie, J. , Gao, J. , Ma, J. , La, D. , Bittner, A. , Sonee, M. , Wagoner, M. and Snook, S. (2013) Novel genomic biomarkers for acute gentamicin nephrotoxicity in dog. Open Journal of Molecular and Integrative Physiology, 3, 125-133. doi: 10.4236/ojmip.2013.33018.

[1]   Dieterle, F., Sistare, F., Goodsaid, F., Papaluca, M., Ozer, J.S., Webb, C.P., Baer, W., Senagore, A., Schipper, M.J., Vonderscher, J., Sultana, S., Gerhold, D.L., Phillips, J.A., Maurer, G., Carl, K., Laurie, D., Harpur, E., Sonee, M., Ennulat, D., Holder, D., Andrews-Cleavenger, D., Gu, Y.Z., Thompson, K.L., Goering, P.L., Vidal, J.M., Abadie, E., Maciulaitis, R., Jacobson-Kram, D., Defelice, A.F., Hausner, E.A., Blank, M., Thompson, A., Harlow, P., Throckmorton, D., Xiao, S., Xu, N., Taylor, W., Vamvakas, S., Flamion, B., Lima, B.S., Kasper, P., Pasanen, M., Prasad, K., Troth, S., Bounous, D., Robinson-Gravatt, D., Betton, G., Davis, M.A., Akunda, J., McDuffie, J.E., Suter, L., Obert, L., Guffroy, M., Pinches, M., Jayadev, S., Blomme, E.A., Beushausen, S.A., Barlow, V.G., Collins, N., Waring, J., Honor, D., Snook, S., Lee, J., Rossi, P., Walker, E. and Mattes, W. (2010) Renal biomarker quailfication submission: A dialog between the FDA-EMEA and predictive safety testing consortium. Nature Biotechnology, 28, 455-462. doi:10.1038/nbt.1625

[2]   Bellomo, R., Ronco, C., Kellum, J.A., Mehta, R.L. and Palevsky, P. (2004) Acute renal failure—Definition, outcome measures, animal models, fluid therapy and information technology needs: The second international consensus conference of the acute dialysis quality initiative (ADWI) group. Critical Care, 8, R204-R212. doi:10.1186/cc2872

[3]   Powell, H.S., Thompson, W.L., Luthe, M.A., Stern, R.C., Grossniklaus, D.A., Bloxham, D.D., Groden, D.L., Jacobs, M.R., DiScenna, A.O., Cash, H.A. and Klinger, D.J. (1983) Once-daily vs. continuous amino glycoside dosing: Efficacy and toxicity in animal and clinical studies of gentamicin, netilmicin, and tobramycin. The Journal of Infectious Diseases, 147, 918-932. doi:10.1093/infdis/147.5.918

[4]   Reiner, N.E., Bloxham, D.D. and Thompson, W.L. (1978) Nephrotoxicity of gentamicin and tobramycin given once daily or continuously in dogs. Journal of Antimicrobial Chemotherapy, 4, 85-101. doi:10.1093/jac/4.suppl_A.85

[5]   Affymetrix product support/technical.

[6]   Nishihara, K., Masuda, S., Shinke, H., Ozawa, A., Ichimura, T., Yonezawa, A., Nakagawa, S., Inui, K., Bonventre, J.V. and Matsubara, K. (2013) Urinary chemokine (C-C) motif ligand 2 (monocyte chemotactic protein-1) as a tubular injury marker for early detection of cisplatin nephrotoxicity. Biochemical Pharmacology, 85, 570-582. doi:10.1016/j.bcp.2012.12.019

[7]   Seo, S.G., Lee, J.K., Yu, J.I., Yun, K.J., Chae, S.K. and Choi, S.C. (2010) Identification of the polymorphisms in IFITM3 gene and their association in a Korean population with ulcerative colitis. Experimental & Molecular Medicine, 42, 99-104. doi:10.3858/emm.2010.42.2.011

[8]   Grone, H.J., Weber, K., Grone, E., Helmchen, U. and Osborn, M. (1987) Coexpression of keratin and vimentin in damaged and regenerating tubular epithelia of the kidney. The American Journal of Pathology, 129, 1-8.

[9]   Baban, B., Liu, J.Y. and Mozafari, M.S. (2013) Endoplasmic reticulum stress response and inflammatory cytokines in type 2 diabetic nephropathy: Role of indoleamine 2,3-dioxygenase and programmed death-1. Experimental and Molecular Pathology, 94, 343-351. doi:10.1016/j.yexmp.2012.11.004

[10]   Miki, Y., Nakata, T., Suzuki, T., Darnel, A.D., Moriya, T., Kaneko, C.Z., Hidaka, K., Shiotsu, Y., Kusaka, H. and Sasano, H. (2002) Systemic distribution of steroid sulfatase and estrogen sulfotransferase in human adult and fetal tissues. The Journal of Clinical Endocrinology & Metabolism, 87, 5760-5768. doi:10.1210/jc.2002-020670

[11]   Theilig, F., Kriz, W., Jerichow, T., Schrade, P., Hahnel, B., Willnow, T., Le Hir, M. and Bachmann, S. (2007) Abrogation of protein uptake through megalin deficient proximal tubules does not safeguard against tubulointerstitial injury. Journal of the American Society of Nephrology, 18, 1824-1834. doi:10.1681/ASN.2006111266

[12]   Gardberg, M., Talvinen, K., Kaipio, K., Iljin, K., Kampf, C., Uhlen, M. and Carpen, O. (2010) Characterization of diaphanous-related formin FMNL2 in human tissues. BMC Cell Biology, 11, 55-66. doi:10.1186/1471-2121-11-55

[13]   Pluznick, J.L., Zou, D.-J., Zhang, X., Yan, Q., Rodriguez-Gil, D.J., Eisner, C., Wells, E., Greer, C.A., Wang, T., Firestein, S., Schnermann, J. and Caplan, M.J. (2008) Functional expression of the olfactory signaling system in the kidney. Proceedings of the National Academy of Sciences, 106, 2059-2064. doi:10.1073/pnas.0812859106

[14]   Ou, Z.L., Natori, Y. and Natori, Y. (2009) Transient and sequential expression of chemokine mRNA in glomeruli in puromycin aminonucleoside nephrosis. Nephron, 85, 254-257.

[15]   Saito, A., Miyauchi, N., Hashimoto, T., Karasawa, T., Han, G.D., Kayaba, M., Sumi, T., Tomita, M., Ikezumi, Y., Suzuki, K., Koitabashi, Y., Shimizu, F. and Kawachi, H. (2011) Neurexin-1, a presynaptic adhesion molecule, localizes at the slit diaphragm of the glomerular podocytes in kidneys. American Journal of Physiology—Regulatory, Integrative and Comparative Physiology, 300, R340-R348. doi:10.1152/ajpregu.00640.2009

[16]   Harper, S.J., Xing, C.Y., Whittle, C., Parry, R., Gillatt, D., Peat, D. and Mathieson, P.W. (2001) Expression of neuropilin-1 by human glomerular epithelial cells in vitro and in vivo. Clinical Science, 101, 439-446. doi:10.1042/CS20010025

[17]   Hassoun, H.T., Grigoryev, D.N., Lie, M.L., Liu, M., Cheadle, C., Tuder, R.M. and Rabb, H. (2007) Ischemic acute kidney injury induces a distant organ functional and genomic response distinguishable from bilateral nephrectomy. Renal Physiology: American Journal of Physiology, 293, F30-F40. doi:10.1152/ajprenal.00023.2007

[18]   Lagor, W.R., Brown, R.J., Toh, S-A., Millar, J.S., Fuki, I.V., de la Llera-Moya, M., Yuen, T., Rithblat, G., Billheimer, J.T. and Rader, D.J. (2009) Overexpression of apolipoprotein F reduces HDL cholesterol levels in vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 40-46. doi:10.1161/ATVBAHA.108.177105

[19]   Gaudreault, I., Guay, D. and Lebel, M. (2004) YB-1 promotes strand separation in vitro of duplex DNA containing either mispaired bases or cisplatin modifications, exhibits endonucleolytic activities and binds several DNA repair proteins. Nucleic Acids Research, 32, 316-327. doi:10.1093/nar/gkh170

[20]   Hingorani, S., Molitoris, B.A. and Himmelfarb, J. (2009) Ironing out the pathogenesis of acute kidney injury. American Journal of Kidney Diseases, 53, 569-571. doi:10.1053/j.ajkd.2009.01.002

[21]   Pizzorno, G., Cao, D., Leffert, J.J., Russell, R.L., Zhang, D. and Handschumacher, R.E. (2002) Homeostatic control of uridine and the role of uridine phosphorylase: A biological and clinical update. BBA-Molecular Basis of Disease, 2-3, 133-144.

[22]   Holst, C.R., Bou-Reslan, H., Bryan B. Gore, B.B., Wong, K., Deanna Grant, D., Chalasani, S., Carano, R.A., Frantz, G.D., Tessier-Lavigne, M., Bolon, B., French, D.M. and Ashkenazi, A. (2007) Secreted sulfatases Sulf1 and Sulf2 have overlapping yet essential roles in mouse neonatal survival. PLoS ONE, 6, 1-14.

[23]   Reule, S. and Gupta, S. (2011) Kidney regeneration and the role of stem cells. Organogenesis, 7, 135-139. doi:10.4161/org.7.2.16285

[24]   Com, E., Boitier, E., Marchandeau, J.-P., Brandenburg, A., Schroeder, S., Hoffmann, D., Mally, A. and Gautier, J.-C. (2012) Integrated transcriptomic and proteomic evaluation of gentamicin nephrotoxicity in rats. Toxicology and Applied Pharmacology, 258, 124-133. doi:10.1016/j.taap.2011.10.015

[25]   Ozaki, N., Matheis, K.A., Gamber, T., Feidl, T., Nolte, A., Kalkuhl, A. and Deschl, U. (2010) Identification of genes involved in gentamicin induced nephrotoxicity in rats—A toxicogenomic investigation. Experimental and Toxicologic Pathology, 61, 555-566. doi:10.1016/j.etp.2009.07.004

[26]   Ward, P.D., La, D. and McDuffie, J.E. (2013) Renal transporters and biomarkers in safety assessment, new insights into toxicity and drug testing. In: S. Gowder, Ed., InTech.

[27]   Bonventre, J.V. (2010) Next generation biomarkers for detecting kidney toxicity. Nature Biotechnology, 28, 336-440. doi:10.1038/nbt0510-436

[28]   Kai, K., Yamaguchi, T., Yoshimatsu, Y., Kinoshita, J., Teranishi, M. and Takasaki, W. (2013) Neutrophil gelatinase-associated lipocalin, a sensitive urinary biomarker of acute kidney injury in dogs receiving gentamicin. The Journal of Toxicological Sciences, 38, 269-277. doi:10.2131/jts.38.269