OJGen  Vol.3 No.3 , September 2013
Evolutionarily conserved features of the retained intron in alternative transcripts of the nxf1 (nuclear export factor) genes in different organisms
ABSTRACT

One of the features of intron-containing genes of the nxf (nuclear export factor) family in different organisms is the presence of an evolutionarily conserved exon-intron block: exon 110nt-intron-exon 37nt. The intron in this evolutionarily conserved block, which we call a “cassette” intron, can be excised or retained in alternative transcripts of nxf1. It corresponds to intron 10 -11 inthe genes that are orthologous to nxf1 in vertebrates, and intron 5 -6 inthe genes that are orthologous to nxf1 in Drosophilidae. The alignment of sequences of cassette introns in nxf1 genes in vertebrates has revealed four evolutionarily conserved sequences: 1)5’flanking sequence, 2) a region containing СТЕ (constitutive transport element), 3) third conserved sequence, and 4)3’flanking sequence. Introns 5-6 of nxf1 in Drosophilidae have no similar conserved sequences. The results of sequence alignment demonstrate a similarity between cassette introns of nxf1 in Drosophilidae in two poly(A) sequences. The prevalence of Dm nxf1 transcripts containing cassette intron 5-6 under completely spliced transcripts in the heads of adult Drosophila melanogaster suggests a functional importance of transcripts that contain a retained intron. Evolutionary conservation, which in Drosophilidae is evident in the presence of poly(A) sequences in cassette introns of the nxf1 genes, is an adaptive feature: the poly(A) sequences are capable of mimicking the 3’-end of transcripts, promote transport from the nucleus to the cytoplasm, or are involved in NMD control. The ability to form characteristic secondary structures is a common feature of nxf1 cassette introns.


Cite this paper
Mamon, L. , Kliver, S. and Golubkova, E. (2013) Evolutionarily conserved features of the retained intron in alternative transcripts of the nxf1 (nuclear export factor) genes in different organisms. Open Journal of Genetics, 3, 159-170. doi: 10.4236/ojgen.2013.33018.
References
[1]   Herold, A., Suyama, M., Rodrigues, J.P., Braun, I.C., Kutay, U., Carmo-Fonseca, M., Bork, P. and Izaurralde, E. (2000) TAP (NXF1) Belongs to a multigene family of putative RNA export factors with a conserved modular architecture. Molecular and Cellular Biology, 20, 8996-9008. doi:10.1128/MCB.20.23.8996-9008.2000

[2]   Wilkie, G.S., Zimyanin, V., Kirby, R., Korey, C., Francis-Lang, H., Van Vactor, D. and Davis, I. (2001) Small bristles, the Drosophila ortholog of NXF-1, is essential for mRNA export throughout development. RNA, 7, 1781-1792.

[3]   Herold, A., Teixeira, L. and Izaurralde, E. (2003) Genome-wide analysis of nuclear mRNA export pathways in Drosophila. EMBO Journal, 22, 2472-2483. doi:10.1093/emboj/cdg233

[4]   Hurt, E., Strasser, K., Segref, A., Bailer, S., Schlaich, N., Presutti, C., Tollervey, D. and Jansen, R. (2000) Mex67p mediates nuclear export of a variety of RNA polymerase II transcripts. The Journal of Biological Chemistry, 275, 8361-8368. doi:10.1074/jbc.275.12.8361

[5]   Serpeloni, M., Vidal, N., Goldenberg, S., Avila, A.R. and Hoffmann, F.G. (2011) Comparative genomics of proteins involved in RNA nucleoplasmic export. BMC Evolutionary Biology, 11, 7. http://www.biomedcentral.com/1471-2148/11/7 doi:10.1186/1471-2148-11-7

[6]   Segref, A., Sharma, K., Doye, V., Hellwig, A., Huber, J., Lührmann, R. and Hurt, E. (1997) Mex67p, a novel factor for nuclear mRNA export, binds to both poly(A)+ RNA and nuclear pores. EMBO Journal, 16, 3256-3271. doi:10.1093/emboj/16.11.3256

[7]   Herold, A., Klymenko, T. and Izaurralde, E. (2001) NXF1/p15 heterodimers are essential for mRNA nuclear export in Drosophila. RNA, 7, 1768-1780.

[8]   Sasaki, M., Takeda, E., Takano, K., Yomogida, K., Katahira, J. and Yoneda, Y. (2005) Molecular cloning and functional characterization of mouse Nxf family gene products. Genomics, 85, 641-653. doi:10.1016/j.ygeno.2005.01.003

[9]   Tan, W., Zolotukhin, A.S., Bear, J., Patenaude, D.J. and Felber, B.K. (2000) The mRNA export in Caenorhabditis elegans is mediated by Ce-NXF-1, an ortholog of human TAP/NXF and Saccharomyces cerevisiae Mex67p. RNA, 6, 1762-1772. doi:10.1017/S1355838200000832

[10]   Tan, W., Zolotukhin, A.S., Tretyakova, I., Bear, J., Lindtner, S., Smulevitch, S.V. and Felber, B.K. (2005) Identification and characterization of the mouse nuclear export factor (Nxf) family members. Nucleic Acids Research, 33, 3855-3865. doi:10.1093/nar/gki706

[11]   Jun, L., Frints, S., Duhamel, H., Herold, A., Abad-Rodrigues, J., Dotti, C., Izaurralde, E., Marynen, P. and Froyen, G. (2001) NXF5, a novel member of the nuclear RNA export factor family, is lost in a male patient with a syndromic form of mental retardation. Current Biology, 11, 1381-1391. doi:10.1016/S0960-9822(01)00419-5

[12]   Kohler, A. and Hurt, E. (2007) Exporting RNA from the nucleus to the cytoplasm. Nature Reviews Molecular Cell Biology, 8, 761-773. doi:10.1038/nrm2255

[13]   Yao, W., Roser, D., Kohler, A., Bradatsch, B., Baβler, J. and Hurt, E. (2007) Nuclear export of ribosomal 60S subunits by the general mRNA export receptor Mex67Mtr2. Molecular Cell, 26, 51-62. doi:10.1016/j.molcel.2007.02.018

[14]   Yoon, D.W., Lee, H., Seol, W., DeMaria, M., Rosenzweig, M. and Jung, J.U. (1997) Tap: A novel protein that interacts with tip of herpesvirus saimiri and induces lymphocyte aggregation. Immunity, 6, 571-582. doi:10.1016/S1074-7613(00)80345-3

[15]   Grüter, P., Tabemero, C., von Kobbe, C., Schmitt, C., Saavedra, C., Bachi, A., Wilm, M., Felber, B.K. and Izaurralde, E. (1998) TAP, the human homolog of Mex67p, mediates CTE-dependent RNA export from the nucleus. Molecular Cell, 1, 649-659. doi:10.1016/S1097-2765(00)80065-9

[16]   Liker, E., Fernandez, E., Izaurralde, E. and Conti, E. (2000) The structure of the mRNA nuclear export factor TAP reveals a cis arrangement of a non-canonical RNP domain and an LRR domain. EMBO Journal, 19, 5587-5598. doi:10.1093/emboj/19.21.5587

[17]   Zolotukhin, A.S., Michalowski, D., Smulevitch, S. and Felber, B.K. (2001) Retroviral constitutive transport element evolved from cellular TAP(NXF1)-binding sequences. Journal of Virology, 75, 5567-5575. doi:10.1128/JVI.75.12.5567-5575.2001

[18]   Teplova, M., Wohlbold, L., Khin, N.W., Izaurralde, E. and Patel, D.J. (2012) Structure-function studies of nucleocytoplasmic transport of retroviral genomic RNA by mRNA export factor TAP. Nature Structural and Molecular Biology, 18, 990-998. doi:10.1038/nsmb.2094

[19]   Gatfield, D. and Izaurralde, E. (2002) REF1/Aly and the additional exon junction complex proteins and dispensable for nuclear mRNA export. The Journal of Cell Biology, 159, 579-588. doi:10.1083/jcb.200207128

[20]   Huang, Y., Gattoni, R., Stevenin, J. and Steitz, J.A. (2003) SR splicing factors serve as adapter proteins for TAPdependent mRNA export. Molecular Cell, 11, 837-843. doi:10.1016/S1097-2765(03)00089-3

[21]   Hautbergue, G.M., Hung, M.-L., Golovanov, A.P., Lian, L.-Y. and Wilson, S.A. (2008) Mutually exclusive interaction drive handover of mRNA from export adaptor to TAP. Proceedings of the National Academy of Sciences of the USA, 105, 5154-5159. doi:10.1073/pnas.0709167105

[22]   Bear, J., Tan, W., Zolotukhin, A.S., Tabernero, C., Hudson, E.A. and Felber, B.K. (1999) Identification of novel import and export signals of human TAP, the protein that binds to the constitutive transport element to the type D retrovirus mRNAs. Molecular and Cellular Biology, 19, 6306-6317.

[23]   Katahira, J., Strasser, K., Podtelejnikov, A., Mann, M., Jung, J.U. and Hurt, E. (1999) The Mex67p-mediated nuclear mRNA export pathway is conserved from yeast to human. EMBO Journal, 18, 2593-2609. doi:10.1093/emboj/18.9.2593

[24]   Bachi, A., Braun, I.C., Rodrigues, J.P., Pante, N., Ribbeck, K., von Kobbe, C., Kutay, U., Wilm, M., Gorlich, D., Carmo-Fonseca, M. and Izaurralde, E. (2000) The C-terminal domain of TAP interacts with the nuclear pore complex and promotes export of specific CTE-bearing RNA substrates. RNA, 6, 136-158. doi:10.1017/S1355838200991994

[25]   Stutz, F. and Izaurralde, E. (2003) The interplay of nuclear mRNP assembly, mRNA surveillance and export. Trends in Cell Biology, 13, 319-327. doi:10.1016/S0962-8924(03)00106-5

[26]   Maruyama, K., Sato, N. and Ohta, N. (1999) Conservation of structure and cold-regulation of RNA-binding proteins in cyanobacteria: Probable convergent evolution with eukaryotic glycine-rich RNA-binding proteins. Nucleic Acids Research, 27, 2029-2036. doi:10.1093/nar/27.9.2029

[27]   Mans, B.J., Anantharaman, V., Aravind, L. and Koonin, E.V. (2004) Comparative genomics, evolution and origins of the nuclear envelope and pore complex. Cell Cycle, 3, 1612-1637. doi:10.4161/cc.3.12.1316

[28]   Tretyakova, I., Zolotukhin, A.S., Tan, W., Bear, J., Propst, F., Ruthel, G. and Felber, B.K. (2005) NXF family protein participates in cytoplasmic mRNA trafficking. The Journal of Biological Chemistry, 280, 31981-31990. doi:10.1074/jbc.M502736200

[29]   Lévesque, L., Bor, Y-С., Matzat, L.H., Jin, L., Berberoglu, S., Rekosh, D., Hammarskjold, M.L. and Paschal, B.M. (2006) Mutations in Tap uncouple RNA export activity from translocation through the nuclear pore complex. Molecular Biology of the Cell, 17, 931-943.

[30]   Katahira, J., Miki, T., Takano, K., Maruhashi, M., Uchikawa, M., Tachibana, T. and Yoneda, Y. (2008) Nuclear RNA export factor 7 is localized in processing bodies and neuronal RNA granules through interactions with shuttling hnRNPs. Nucleic Acids Research, 36, 616-628. doi:10.1093/nar/gkm556

[31]   Izaurralde, E. (2001) “Friedrich Miescher Prize Awardee Lecture Review”. A conserved family of nuclear export receptors mediates the exit of messenger RNA to the cytoplasm. Cellular and Molecular Life Sciences, 58, 1105-1112. doi:10.1007/PL00000924

[32]   Lai, D., Sakkas, D. and Huang, Y. (2006) The fragile X mental retardation protein interacts with a distinct mRNA nuclear export factor NXF2. RNA, 12, 1446-1449. doi:10.1261/rna.94306

[33]   Ohno, S. (1970) Evolution by Gene Duplication. SpringerVerlag, New York.

[34]   Modrek, B. and Lee, C.J. (2003) Alternative splicing in the human, mouse and rat genomes is associated with an increased frequency of exon creation and/or loss. Nature Genetics, 34,177-180. doi:10.1038/ng1159

[35]   Hughes, A.L. (2005) Gene duplication and the origin novel proteins. Proceedings of the National Academy of Sciences of the USA, 102, 8791-8792. doi:10.1073/pnas.0503922102

[36]   Zhou, Q., Zhang, G., Zhang, Y., Xu, S., Zhao, R., Zhan, Z., Li, X., Ding, Y., Yang, S. and Wang, W. (2008) On the origin of new genes in Drosophila. Genome Research, 18, 1446-1455. doi:10.1101/gr.076588.108

[37]   Brosius, J. (1991) Retroposons—Seeds of evolution. Science, 251, 753. doi:10.1126/science.1990437

[38]   Bai, Y., Casola, C. and Betran, E. (2008) Evolutionary origin of regulatory regions of retrogenes in Drosophila. BMC Genomics, 9, 241. http://www.biomedcentral.com/1471-2164/9/241

[39]   Braun, I.C., Herold, A., Rode, M., Conti, E. and Izaurralde, E. (2001) Overexpression of TAP/p15 heterodimers bypasses nuclear retention and stimulates nuclear mRNA export. The Journal of Biological Chemistry, 276, 20536-20543. doi:10.1074/jbc.M100400200

[40]   Erkmann, J.A. and Kutay, U. (2004) Nuclear export of mRNA: From the site of transcription to the cytoplasm. Experimental Cell Research, 296, 12-20.

[41]   Cullen, B.R. (2003) Nuclear RNA export. Journal of Cell Science, 116, 587-597. doi:10.1242/jcs.00268

[42]   Huang, Y.Q. and Steitz, J.A. (2005) SRprises along a messenger’s journey. Molecular Cell, 17, 613-615. doi:10.1016/j.molcel.2005.02.020

[43]   Bjork, P. and Wieslander, L. (2011) Nucleocytoplasmic mRNP export is an integral part of mRNP biogenesis. Chromosoma, 120, 23-38. doi:10.1007/s00412-010-0298-1

[44]   Strasser, K. and Hurt, E. (2000) Yra1p, a conserved nuclear RNA-binding protein, interacts directly with Mex67p and is required for mRNA export. EMBO Journal, 19, 410-420. doi:10.1093/emboj/19.3.410

[45]   Stutz, F., Bachi, A., Doerks, T., Braun, I.C., Séraphin, B., Wilm, M., Bork, P. and Izaurralde, E. (2000) REF, an evolutionary conserved family of hnRNP-like proteins, interacts with TAP/Mex67p and participates in mRNA nuclear export. RNA, 6, 638-650. doi:10.1017/S1355838200000078

[46]   Gencheva, M., Lin, T.-Y., Wu, X., Yang, L., Richard, C., Jones, M., Lin, S.-B. and Lin, R.-J. (2010) Nuclear retention of unspliced pre-mRNAs by mutant DHX16/hPRP2, a spliceosomal DEAH-box protein. The Journal of Biological Chemistry, 285, 35624-35632. doi:10.1074/jbc.M110.122309

[47]   Chang, D.D. and Sharp, P.A. (1989) Regulation by HIV Rev depends upon recognition of splice sites. Cell, 59, 789-795. doi:10.1016/0092-8674(89)90602-8

[48]   Legrain, P. and Rosbash, M. (1989) Some cis-and transacting mutations for splicing target pre-mRNA to the cytoplasm. Cell, 57, 573-583. doi:10.1016/0092-8674(89)90127-X

[49]   Galante, P.A., Sakabe, N.J., Kirschbaum-Slager, N. and De Souza, S.J. (2004) Detection and evaluation of intron retention events in the human transcriptome. RNA, 10, 757-765. doi:10.1261/rna.5123504

[50]   Justman, Q.A. and Clinton, G.M. (2002) Herstatin, an autoinhibitor of the human epidermal growth factor receptor 2 tyrosine kinase, modulates epidermal growth factor signaling pathways resulting in growth arrest. The Journal of Biological Chemistry, 277, 20618-20624. doi:10.1074/jbc.M111359200

[51]   Forrest, S.T., Barringhaus, K.G., Perlegas, D., Hammarskjold, M.L. and McNamara, C.A. (2004) Intron retention generates a novel Id3 isoform that inhibits vascular lesion formation. The Journal of Biological Chemistry, 279, 32897-32903. doi:10.1074/jbc.M404882200

[52]   Michael, I.P., Kurlender, L., Memari, N., Yousef, G.M., Du, D., Grass, L., Stephan, C., Jung, K. and Diamandis, E.P. (2005) Intron retention: A common splicing event within the human kallikrein gene family. Clinical Chemistry, 51, 506-515. doi:10.1373/clinchem.2004.042341

[53]   Hammarskjold, M.-L. (2001) Constitutive transport element-mediated nuclear export. Current Topics in Microbiology and Immunology, 259, 77-93. doi:10.1007/978-3-642-56597-7_4

[54]   Kang, Y. and Cullen, B.R. (1999) The human Tap protein is a nuclear mRNA export factor that contains novel RNA-binding and nucleoplasmic transport sequences. Genes and Development, 13, 1126-1139. doi:10.1101/gad.13.9.1126

[55]   Jin, L., Guzik, B.W., Bor, Y.-C., Rekosh, D. and Hammarskjold, M.-L. (2003) Tap and NXT promote translation of unspliced mRNA. Genes and Development, 17, 3075-3086. doi:10.1101/gad.1155703

[56]   Li, Y., Bor, Y.-C., Misawa, Y., Xue, Y., Rekosh, D. and Hammarskjold, M.-L. (2006) An intron with a constitutive transport element is retained in a Tap messenger RNA. Nature, 443, 234-237. doi:10.1038/nature05107

[57]   Ivankova, N., Tretyakova, I., Lyozin, G., Avanesyan, E., Zolotukhin, A., Zatsepina, O.G., Evgen’ev, M.B. and Mamon, L.A. (2010) Alternative transcripts expressed by small bristles, the Drosophila melanogaster nxf1 gene. Gene, 458, 11-19. doi:10.1016/j.gene.2010.02.013

[58]   Conti, E. and Izaurralde, E. (2005) Nonsense-mediated mRNA decay: Molecular insights and mechanistic variations cross species. Current Opinion in Cell Biology, 17, 316-325. doi:10.1016/j.ceb.2005.04.005

[59]   Amrani, N., Sachs, M.S. and Jacobson, A. (2006) Early nonsense: mRNA decay solves a translational problem. Nature Reviews Molecular Cell Biology, 7, 415-425. doi:10.1038/nrm1942

[60]   Bor, Y., Swartz, J., Morrison, A., Recosh, D., Ladomery, M. and Hammarskjold, M.-L. (2006) The Wilms’ tumor 1 (WT1) gene (+KTS isoform) functions with a CTE to enhance translation from an unspliced RNA with a retained intron. Genes and Development, 20, 1597-1608. doi:10.1101/gad.1402306

[61]   Coyle, J.H., Bor, Y.-C., Rekosh, D. and Hammarskjold, M.-L. (2011) The Tpr protein regulates export of mRNAs with retained introns that traffic through the nxf1 pathway. RNA, 17, 1344-1356. doi:10.1261/rna.2616111

[62]   Fuke, H. and Ohno, M. (2008) Role of poly(A) tail as an identity element for mRNA nuclear export. Nucleic Acids Research, 36, 1037-1049. doi:10.1093/nar/gkm1120

[63]   Mangus, D.A., Evans, M.C. and Jacobson, A. (2003) Poly(A)-binding proteins: Multifunctional scaffolds for the post-transcriptional control of gene expression. BMC Genome Biology, 4, 223. doi:10.1186/gb-2003-4-7-223

[64]   Behm-Ansmant, I., Gatfield, D., Rehwinkel, J., Hilgers, V. and Izaurralde, E. (2007) A conserved role for cytoplasmic poly(A)-binding protein 1 (PABPC1) in nonsense-mediated mRNA. EMBO Journal, 26, 1-11. doi:10.1038/sj.emboj.7601588

[65]   Nakaya, H.I., Amaral, P.P., Louro, R., Lopes, A., Fachel, A.A., Moreira, Y.B., El-Jundi, T.A., Da Silva, A.M., Reis, E.M. and Verjovski-Almeida, S. (2007) Genome mapping and expression analyses of human intronic noncoding RNAs reveal tissue-specific patterns and enrichment in genes related to regulation of transcription. BMC Genome Biology, 8, 43.

[66]   Dinger, M.E., Gascoigne, D.K. and Mattick, J.S. (2011) The evolution of RNAs with multiple functions. Biochimie, 93, 2013-2018. doi:10.1016/j.biochi.2011.07.018

[67]   Wadler, C.S. and Vanderpool, C.K. (2007) A dual function for a bacterial small RNA: SgrS performs base pairing-dependent regulation and encodes a functional polypeptide. Proceeding of the National Academy of Sciences of the United States of America, 104, 20454-20459. doi:10.1073/pnas.0708102104

[68]   Kageyama, Y., Kondo, T. and Hashimoto, Y. (2011) Coding vs non-coding: Translatability of short ORFs found in putative non-coding transcripts. Biochimie, 93, 1981-1986. doi:10.1016/j.biochi.2011.06.024

[69]   Kloc, M., Foreman, V. and Reddy, S. (2011) Binary function of mRNA. Biochimie, 93, 1955-1961. doi:10.1016/j.biochi.2011.07.008

[70]   Okonechnikov, K., Golosova, O. and Fursov, M. (2012) Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics, 28, 1166-1167. doi:10.1093/bioinformatics/bts091

[71]   Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673-4680. doi:10.1093/nar/22.22.4673

[72]   Notredame, C., Higgins, D.G. and Heringa, J. (2000) Tcoffee: A novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology, 302, 205-217. doi:10.1006/jmbi.2000.4042

[73]   Huelsenbeck, J.P. and Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17, 754-755. doi:10.1093/bioinformatics/17.8.754

[74]   Markham, N.R. and Zuker, M. (2008) UNAFold: Software for nucleic acid folding and hybridization. In: Keith, J.M., Ed., Methods in Molecular Biology. Bioinformatics: Structure, Function and Applications, Humana Press, Totowa, 3-31.

 
 
Top