AS  Vol.4 No.9 , September 2013
RNAi of MiASB caused high mortality of Meloidogyne incognita juveniles and inhibited the nematode disease

The southern root-knot nematode, Meloidogyne incognita, is one of the most prevalent and damaging plant-parasitic nematodes in the world and causes serious damages to agricultural production. We cloned a mitochondrial ATP synthase b subunit gene fragment of M. incognita (MiASB) based on the nematode genomics prediction. By soaking in the MiASB dsRNA solution, the hatching of RNAi treated eggs was reduced by 60% compared to negative control and by 64% compared to untreated control. Mortality of RNAi treated second stage juvenile (J2) was 8.6 times higher than that of negative control and 26 times higher than the untreated control. Inoculating the RNAi treated egg masses and J2 to tomato seedlings showed the pathogencity was significantly reduced. For the RNAi treated egg masses, the amount of root galls on silence treated seedlings was reduced by 92% compared to that on the negative control seedlings, and reduced by 93% compared to that on untreated control seedlings. For the treated J2, the amount of root galls on silence treated seedlings was reduced by 83% and 86% compared to negative and untreated control seedlings, respectively. The study revealed the MiASB silence had a positive effect on prevention and control of root-knot nematode disease, and also showed that the MiASB may be involved in the pathogenesis of nematode, which provided new ideas and ways to the research of nematode pathology and nematode disease control.

Cite this paper: Huang, Y. , Mei, M. , Shen, B. , Mao, Z. and Xie, B. (2013) RNAi of MiASB caused high mortality of Meloidogyne incognita juveniles and inhibited the nematode disease. Agricultural Sciences, 4, 483-490. doi: 10.4236/as.2013.49065.

[1]   Rosso, M.N., Dubrana, M.P., Cimbolini, N., Jaubert, S. and Abad, P. (2005) Application of RNA interference to root-knot nematode genes encoding esophageal gland proteins. Molecular Plant-Microbe Interactions, 18, 615-620. doi:10.1094/MPMI-18-0615

[2]   Dang, Q.L., Kim, W.K., Nguyen, C.M., Choi, Y.H., Choi, G.J., Jang, K.S., Park, M.S, Lim, C.H., Lu, N.H. and Kim, J. (2011) Nematicidal and antifungal activities of Annonaceous acetogeninsfrom Annona squamosa against various plant pathogens. Journal of Agricultural and Food Chemistry, 59, 11160-11167. doi:10.1021/jf203017f

[3]   Naz, I., Palomares-Rius, J.E., Saifullah, B.V., Khan, M.R., Ali, S. and Ali, S. (2012) In vitro and in plantanematicidal activity of Fumaria parviflora (Fumariaceae) against the southern root-knot nematode Meloidogyne incognita. Plant Pathology, 62, 943-952. doi:10.1111/j.1365-3059.2012.02682.x

[4]   Caboni, P., Ntalli, N.G., Aissani, N., Cavoski, I. and Angioni, A. (2012) Nematicidal activity of (E,E)-2,4-Decadienal and (E)-2-Decenal from Ailanthus altissima against Meloidogyne javanica. Journal of Agricultural and Food Chemistry, 60, 1146-1151. doi:10.1021/jf2044586

[5]   Oka, Y., Shuker, S. and Tkachi, N. (2009) Nematicidal efficacy of MCW-2, a new nematicide of the fluoroalkenyl group, against the root-knot nematode Meloidogyne javanica. Pest Management Science, 65, 1082-1089. doi:10.1002/ps.1796

[6]   Oka, Y., Nacar, S., Putievsky, E., Ravid, U., Yaniv, Z. and Spiegel, Y. (2000) Nematicidal activity of essential oils and their components against the root-knot nematode. Phytopathology, 90, 710-715. doi:10.1094/PHYTO.2000.90.7.710

[7]   Ntalli, N.G., Manconi, F., Leonti, M., Maxia, A. and Caboni, P. (2011) Aliphatic ketones from ruta chalepensis (rutaceae) induce paralysis on root knot nematodes. Journal of Agricultural and Food Chemistry, 59, 7098-7103. doi:10.1021/jf2013474

[8]   Arguel, M., Jaouannet, M., Magliano, M., Abad, P. and Rosso, M. (2012) siRNAstrigger efficient silencing of a parasitism gene in plant parasitic root-knot nematodes. Genes, 3, 391-408. doi:10.3390/genes3030391

[9]   Chen, Q., Rehman, S., Smant, G. and Jones, J.T. (2005) Functional analysis of pathogencity proteins of the potato cyst nematode Globodera rostochiensis using RNAi. Molecular Plant-Microbe Interactions, 18, 621-625. doi:10.1094/MPMI-18-0621

[10]   Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E. and Mello, C.C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806-811. doi:10.1038/35888

[11]   Adamo, A., Woglar, A., Silva, N., Penkner, A., Jantsch, V. and La Volpe, A. (2012) Transgene-mediated cosuppression and RNA interference enhance germ-line apoptosis in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of The United States of America, 109, 3440-3445. doi:10.1073/pnas.1107390109

[12]   Chen, J., Zhang, D., Yao, Q., Zhang, J., Dong, X., Tian, H., Chen, J. and Zhang, W. (2010) Feeding-based RNA interference of a trehalose phosphate synthase gene in the brown planthopper, Nilaparvata lugens. Insect Molecular Biology, 19, 777-786. doi:10.1111/j.1365-2583.2010.01038.x

[13]   Seelert, H. and Dencher, N.A. (2011) ATP synthase superassemblies in animals and plants: Two or more are better. Biochimica et Biophysica Acta, 1807, 1185-1197.

[14]   Wittig, I. and Schagger, H. (2009) Supramolecular organization of ATP synthase and respiratory chain in mitochondrial membranes. Biochimica et Biophysica Acta, 1787, 672-680. doi:10.1016/j.bbabio.2008.12.016

[15]   Bisetto, E., Picotti, P., Giorgio, V., Alverdi, V., Mavelli, I. and Lippe, G. (2008) Functional and stoichiometric analysis of subunit e in bovine heart mitochondrial F0F1 ATP synthase. Journal of Bioenergetics and Biomembranes, 40, 257-267. doi:10.1007/s10863-008-9183-5

[16]   Meyer, B., Wittig, I., Trifilieff, E., Karas, M. and Schagger, H. (2007) Identification of two proteins associated with mammalian ATP synthase. Molecular & Cellular Proteomics, 6, 1690-1699. doi:10.1074/mcp.M700097-MCP200

[17]   Li, H.Q., Bai, C.Q., Chu, S.S., Zhou, L., Du, S.S., Li, Z.L. and Liu, Q.Z. (2011) Chemical composition and toxicities of the essential oil derived from Kadsura heteroclita stems against Sitophilus zeamais and Meloidogyne incognita. Journal of Medicinal Plants Research, 5, 4943-4948.

[18]   Urwin, P.E., Lilley, C.J. and Atkinson, H.J. (2002) Ingestion of doublestranded RNA by preparasitic juvenile cyst nematodes leads to RNA interference. Molecular Plant-Microbe Interactions, 15, 747-752. doi:10.1094/MPMI.2002.15.8.747

[19]   Sindhu, A.S., Maier, T.R., Mitchum, M.G., Hussey, R.S., Davis, E.L. and Baum, T.J. (2009) Effective and specific in planta RNAi in cyst nematodes: expression interference of four parasitism genes reduces parasitic success. Journal of Experimental Botany, 60, 315-324. doi:10.1093/jxb/ern289

[20]   Fraser, A.G., Kamath, R.S., Zipperlen, P., Martinez-Campos, M., Sohrmann, M. and Ahringer, J. (2000) Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature, 408, 325-330. doi:10.1038/35042517

[21]   Gonczy, P., Echeverri, C., Oegema, K., Coulson, A., Jones, S.J.M., Copley, R.R., Duperon, J., Oegema, J., Brehm, M., Cassin, E., Hannak, E., Kirkham, M., Pichler, S., Flohrs, K., Goessen, A., Leidel, S., Alleaume, A.M., Martin, C., Ozlu, N., Bork, P. and Hyman, A.A. (2000) Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature, 408, 331-336. doi:10.1038/35042526

[22]   Maeda, I., Kohara, Y., Yamamoto, M. and Sugimoto, A. (2001) Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi. Current Biology, 11, 171-176. doi:10.1016/S0960-9822(01)00052-5

[23]   Piano, F., Schetter, A.J., Mangone, M., Stein, L. and Kemphues, K.J. (2000) RNAi analysis of genes expressed in the ovary of Caenorhabditis elegans. Current Biology, 10, 1619-1622. doi:10.1016/S0960-9822(00)00869-1

[24]   Kamath, R.S., Fraser, A.G., Dong, Y., Poulin, G., Durbin, R., Gotta, M., Kanapin, A., Le Bot, N., Moreno, S., Sohrmann, M., Welchman, D.P., Zipperlen, P. and Ahringer, J. (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature, 421, 231-237. doi:10.1038/nature01278

[25]   Sonnichsen, B., Koski, L.B., Walsh, A., Marschall, P., Neumann, B., Brehm, M., Alleaume, A.M., Artelt, J., Bettencourt, P., Cassin, E., Hewitson, M., Holz, C., Khan, M., Lazik, S., Martin, C., Nitzsche, B., Ruer, M., Stamford, J., Winzi, M., Heinkel, R., Roder, M., Finell, J., Hantsch, H., Jones, S.J., Jones, M., Piano, F., Gunsalus, K.C., Oegema, K., Gonczy, P., Coulson, A., Hyman, A.A. and Echeverri, C.J. (2005) Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature, 434, 462-469. doi:10.1038/nature03353

[26]   Fairbairn, D.J., Cavallaro, A.S., Bernard, M., MahalingaIyer, J., Graham, M.W. and Botella, J.R. (2007) Host-delivered RNAi: An effective strategy to silence genes in plant parasitic nematodes. Planta, 226, 1525-1533. doi:10.1007/s00425-007-0588-x

[27]   Charlton, W.L., Harel, H.Y., Bakhetia, M., Hibbard, J.K., Atkinson, H.J. and Mcpherson, M.J. (2010) Additive effects of plant expressed double-stranded RNAs on rootknot nematode development. International Journal for Parasitology, 40, 855-864. doi:10.1016/j.ijpara.2010.01.003

[28]   Sukno, S.A., McCuiston, J., Wong, M.Y., Wang, X., Thon, M.R., Hussey, R., Baum, T. and Davis, E. (2007) Quantitative detection of double-stranded RNA-mediated gene silencing of parasitism genes in Heterodera glycines. Journal of Nematology, 39, 145-152.

[29]   Samarasinghe, B., Knox, D.P. and Britton, C. (2011) Factors affecting susceptibility to RNA interference in Haemonchus contortus and in vivo silencing of an H11 aminopeptidase gene. International Journal for Parasitology, 41, 51-59. doi:10.1016/j.ijpara.2010.07.005

[30]   Walker, J.E. and Dickson, V.K. (2006) The peripheral stalk of the mitochondrial ATP synthase. Biochimica et Biophysica Acta, 1757, 286-296. doi:10.1016/j.bbabio.2006.01.001