JMP  Vol.4 No.8 A , August 2013
An Exact Scalar Field Inflationary Cosmological Model Which Solves Cosmological Constant Problem, Dark Matter Problem and Other Problems of Inflationary Cosmology
Author(s) Debasis Biswas*
ABSTRACT

An exact scalar field cosmological model is constructed from the exact solution of the field equations. The solutions are exact and no approximation like slow roll is used. The model gives inflation, solves horizon and flatness problems. The model also gives a satisfactory estimate of present vacuum energy density as well as vacuum energy density at Planck epoch and solves cosmological constant problem of 120 orders of magnitude discrepancy of vacuum energy density. Further, this model predicts existence of dark matter/energy and gives an extremely accurate estimate of present energy density of dark matter and energy. Along with explanations of graceful exit, radiation era, matter domination, this model also indicates the reason for present accelerated state of the universe. In this work a method is shown following which one can construct an infinite number of exact scalar field inflationary cosmological models.


Cite this paper
D. Biswas, "An Exact Scalar Field Inflationary Cosmological Model Which Solves Cosmological Constant Problem, Dark Matter Problem and Other Problems of Inflationary Cosmology," Journal of Modern Physics, Vol. 4 No. 8, 2013, pp. 172-182. doi: 10.4236/jmp.2013.48A017.
References
[1]   A. Guth, Physical Review D, Vol. 23, 1981, pp. 347-356. doi:10.1103/PhysRevD.23.347

[2]   A. A. Starobinsky, JETP Letters, Vol. 30, 1979, p. 682.

[3]   D. Kazanas, The Astrophysical Journal, Vol. 241, 1980, pp. L59-L63. doi:10.1086/183361

[4]   K. Sato, Monthly Notices of the Royal Astronomical Society, Vol. 195, 1981, p. 467.

[5]   A. Linde, Physics Letters B, Vol. 108, 1982, pp. 389-393. doi:10.1016/0370-2693(82)91219-9

[6]   A. Albrecht and P. Steinhardt, Physical Review Letters, Vol. 48, p. 82.

[7]   M. Kamionkowski, 1998. astro-ph/9808004

[8]   M. Turner and L. Widrow, Physical Review D, Vol. 37, 1988, pp. 2743-2754. doi:10.1103/PhysRevD.37.2743

[9]   A. R. Liddle, 1999. astro-ph/9910110

[10]   D. H. Lyth and E. D. Stewart, Physics Letters B, Vol. 274, 1992, pp. 168-172. doi:10.1016/0370-2693(92)90518-9

[11]   F. Lucchin and S. Matarrese, Physical Review D, Vol. 32, 1985, pp. 1316-1322. doi:10.1103/PhysRevD.32.1316

[12]   S. Weinberg, “Cosmology,” O.U.P., 2008.

[13]   S. Carroll, “Spacetime and Geometry: An Introduction to General Relativity,” Addision-Wesley, Boston, 2003.

[14]   A. Zee, “Quantum Field Theory in a Nutshell,” 2nd Edition, Princeton University Press, Princeton, 2010.

[15]   S. Perlmutter, et al., The Astrophysical Journal, Vol. 517, 1999, p. 565. doi:10.1086/307221

[16]   A. G. Riess, et al., The Astrophysical Journal, Vol. 116, 1998, p. 1009. doi:10.1086/300499

[17]   B. Schimdt, et al., The Astrophysical Journal, Vol. 507, 1998.

[18]   M. P. Hobson, G. P. Efstathiou and A. N. Lasenby, “General Relativity: An Introduction for Physicist,” C.U.P., 2006.

[19]   D. M. Burton, “Elementary Number Theory,” 6th Edition, Tata Mcgraw-Hill, Noida, 2007.

[20]   S. Y. Pi, Physical Review Letters, Vol. 52, 1984, pp. 1725-1728. doi:10.1103/PhysRevLett.52.1725

[21]   Q. Shafi and A. Vilenkin, Physical Review Letters, Vol. 52, 1984.

[22]   Debasis Biswas. arxiv.org>physics>arxiv:1112.3005

 
 
Top