[1] H. Weyl, Annalen der Physik, Vol. 365, 1919, pp. 481-500. doi:10.1002/andp.19193652104
[2] P. A. M. Dirac, Proceedings of the Royal Society of London A, Vol. 333, 1973, pp. 403-418. doi:10.1098/rspa.1973.0070
[3] M. Israelit, “The Weyl-Dirac Theory and Our Universe,” Nova, New York, 1999.
[4] D. Gregorash and G. Papini, Nuovo Cimento B, Vol. 63, 1981, pp. 487-509.
[5] W. R. Wood and G. Papini, Foundations of Physics Letters, Vol. 6, 1993, pp. 207-223. doi:10.1007/BF00665726
[6] W. R. Wood and G. Papini, Physical Review D, Vol. 45, 1992, pp. 3617-3627. doi:10.1103/PhysRevD.45.3617
[7] M. Agop and P. Nica, Classical and Quantum Gravity, Vol. 16, 1999, pp. 3367-3380. doi:10.1088/0264-9381/16/10/324
[8] M. Agop and P. Nica, Classical and Quantum Gravity, Vol. 17, 2000, pp. 3627-3644. doi:10.1088/0264-9381/17/18/303
[9] M. Agop, P. D. Ioannou and C. Buzea, Classical and Quantum Gravity, Vol. 18, 2001, pp. 4743-4762. doi:10.1088/0264-9381/18/22/303
[10] M. Agop, P. Nica and M. Girtu, General Relativity and Gravitation, Vol. 40, 2008, pp. 35-55. doi:10.1007/s10714-007-0519-y
[11] D. Bohm, Physical Review, Vol. 85, 1952, pp. 166-179. doi:10.1103/PhysRev.85.166
[12] G. Papini, “Berry’s Phase and Particle Interferometry in Weak Gravitational Fields,” In: J. Aundretsch and V. de Sabbata, Eds. Quantum Mechanics in Curved Space-Time, Plenum Press, New York, 1990, pp. 473-483. doi:10.1007/978-1-4615-3814-1_15
[13] A. Feoli, W. R. Wood and G. Papini, “A Dynamical Symmetry Breaking Model in Weyl Space,” Journal of Mathematical Physics, Vol. 39, 1998, p. 3322.
[14] G. Papini, Il Nuovo Cimento B Series, Vol. 68, 1970, pp. 1-10. doi:10.1007/BF02710354
[15] J. Anandan, Physical Review D, Vol. 15, 1977, pp. 1448-1457. doi:10.1103/PhysRevD.15.1448
[16] R. M. Wald, “General Relativity,” University of Chicago Press, Chicago, 1984. doi:10.7208/chicago/9780226870373.001.0001
[17] S. Weinberg, “Gravitation and Cosmology,” Wiley, New York, 1972.
[18] J. L. Synge, “Relativity: The General Theory,” North-Holland, Amsterdam, 1964.
[19] R. Adler, M. Bazin and M. Schiffer, “Introduction to General Relativity,” McGraw-Hill, New York, 1965.
[20] G. ‘tHooft, Nuclear Physics B, Vol. 190, 1981, pp. 455-478. doi:10.1016/0550-3213(81)90442-9
[21] M. S. El Naschie, O. E. Rossler and I. Prigogine, “Quantum Mechanics, Diffusion and Chaotic Fractals,” Elsevier, Oxford, 1995.
[22] P. Weibel, G. Ord and O. E. Rosler, “Space Time Physics and Fractality,” Springer, New York, 2005. doi:10.1007/3-211-37848-0
[23] L. Nottale, “Fractal Space-Time and Microphysics: Towards a Theory of Scale Relativity,” World Scientific Singapore City, 1993. doi:10.1142/1579
[24] L. Nottale, “Scale Relativiry and Fractal Space-Time—A New Approach to Unifying Relativity and Quantum Mechanics,” Imperial College Press, London, 2011.
[25] G. Ord, Journal of Physics A: Mathematical and General, Vol. 16, 1983, p. 1869. doi:10.1088/0305-4470/16/9/012
[26] M. Agop, N. Forna, I. CasianBotez and C. J. Bejenariu, Journal of Computational and Theoretical Nanoscience, Vol. 5, 2008, p. 483.
[27] I. CasianBotez, M. Agop, P. Nica, V. Paun and G. V. Munceleanu, Journal of Computational and Theoretical Nanoscience, Vol. 7, 2010, pp. 2271-2280. doi:10.1166/jctn.2010.1608
[28] G. V. Munceleanu, V. P. Paun, I. Casian-Botez and M. Agop, International Journal of Bifurcation and Chaos, Vol. 21, 2011, pp. 603-618.
[29] M. R. Fazlollah, “An Introduction to Information Theory,” Dover Publications, New York, 1994.
[30] B. B. Mandelbrot, “The Fractal Geometry of Nature,” Freeman, San Francisco, 1983.
[31] J. V. Armitage and W. F. Eberlein, “Elliptic Functions,” Cambridge University Press, Cambridge, 2006.
[32] D. L. Aronstein and C. R. Strout Jr., Physical Review A, Vol. 55, 1997, pp. 1050-2947.
[33] S. Janiszewski and A. Karch, Physical Rewiew Letters, Vol. 110, 2013, Article ID: 081601. doi:10.1103/PhysRevLett.110.081601