Back
 OPJ  Vol.3 No.5 , September 2013
Application of the Sampling and Replication Operators to Describe Mode-Locked Radiation
Abstract: Sampling and replication operators are used for a description of the mode-locking radiation. Such description allows taking into account the influence of the shape of the gain curve of the active medium of the mode-locking laser on the form of the pulses generated by it.
Cite this paper: Gitin, A. (2013) Application of the Sampling and Replication Operators to Describe Mode-Locked Radiation. Optics and Photonics Journal, 3, 305-310. doi: 10.4236/opj.2013.35047.
References

[1]   S. Backus, C. G. Durfee, and M. M. Murnane and H. C. Kapteyn, “High Power Ultrafast Lasers,” Review of Scientific Instruments, Vol. 69, No. 3, 1998, pp. 1207-1223. doi:10.1063/1.1148795

[2]   J. Herrman and B. Wilhelmi, “Lasers for Ultrashort Light Pulses,” Akademie, Berlin, 1987.

[3]   S. A. Akhmanov, V. A. Vysloukh and A. S. Chirkin, “Optika Femtosekundnyh Lazernyh Impulsov, (Optics of Femtosecond Laser Pulses, in Russian),” Nauka, Moskva, 1988.

[4]   Wikipedia, the Free Encyclopedia, “Mode-Locking”. http://en.wikipedia.org/wiki/Mode-locking

[5]   H. A. Haus, “Mode-Locking of Lasers,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 6, No. 6, 2000, pp. 1173-1185. http://wr.lib.tsinghua.edu.cn/sites/default/files/1174986066162.pdf doi:10.1109/2944.902165

[6]   A. M. Weiner, “Ultrafast Optics,” John Wiley & Sons, Inc., Hoboken, 2009. doi:10.1002/9780470473467

[7]   O. Svelto, “Principles of Lasers,” Springer-Verlag, New York, 2009.

[8]   G. Steineyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, “Frontiers in Ultrashort Pulse Generation: Pushing the Limits in Linear and Nonlinear Optics,” Science, Vol. 286, No. 5444, 1999, pp. 1507-1512. doi:10.1126/science.286.5444.1507

[9]   F. Trager, “Springer Handbook of Lasers and Optics,” Springer, Berlin, 2007. doi:10.1007/978-0-387-30420-5

[10]   A. Yariv, “Internal Modulation in Multimode Laser Oscillators,” Journal of Applied Physics, Vol. 36, No. 2, 1965, pp. 388-391. doi:10.1063/1.1713999

[11]   U. H. Gerlach, “Linear Mathema tics in Infinite Dimensions,” Columbus, 2009.

[12]   P. Giaccari, J. D. Deschenes, P. Saucier, J. Genest and P. Tremblay, “Active Fourier-Transform Spectroscopy Combining the Direct RF Beating of Two Fiber-Based Mode Locked Lasers with a Novel Referencing Method,” Optics Express, Vol. 16, No. 6, 2008, pp. 4347-4365. doi:10.1364/OE.16.004347

[13]   M. Sheik-Bahae, “Experimental Techniques of Optics,” University of New Mexico, Albuquerque, 2013, http://www.optics.unm.edu/sbahae/Optics%20Lab/index.htm

[14]   W. Wilcock, ESS 522, “Geoscientific Data Analysis, (Outdated Course Catalog Title is “Geophysical Data Collection and Analysis),” 2012. http://www.ocean.washington.edu/courses/ess522/lecturenotes.htm

[15]   G. R. Jiracek, J. F. Ferguson, L. W. Braile and B. Gilpin, “Digital Analysis of Geophysical Signals and Waves”. http://serc.carleton.edu/NAGTWorkshops/geophysics/activities/18990.html

[16]   Wikipedia, the Free Encyclopedia, “Fourier Transform”. http://en.wikipedia.org/wiki/Fourier_transform

[17]   B. Williamson, “The Uncertainty Principle,” 2000. http://users.cecs.anu.edu.au/~williams/uncertainty.pdf

[18]   Wikipedia, the Free Encyclopedia, “Full Width at Half Maximum”. http://en.wikipedia.org/wiki/Full_width_at_half_maximum

[19]   C. Hirlimann, “Laser Basics,” In: C. Rulliere, Ed., Femtosecond Laser Pulses: Principles and Experiments, Springer, Berlin, 2004, pp. 1-23.

 
 
Top