What Is the Missing Dark Energy in a Nutshell and the Hawking-Hartle Quantum Wave Collapse

Show more

References

[1] B. Mandelbrot, “The Fractal Geometry of Nature,” Freeman, New York, 1983.

[2] F. Morgan, “Geometric Measure Theory,” Elsevier, Amsterdam, 2009.

[3] A. Stakhov, “The Mathematics of Harmony,” World Scientific, New Jersey, 2009.

[4] M. S. El Naschie, O. E. Rossler and I. Prigogine, “Quantum Mechanics, Diffusion and Chaotic Fractals,” Pergamon Press, Elsevier, Oxford, 1995.

[5] J. Huan-He and M. S. El Naschie, “On the Monadic Nature of Quantum Gravity as Highly Structured Golden Ring Spaces and Spectra,” Fractal Spacetime & NonCommutative Geometry in Quantum & High Energy Physics, Vol. 2, No. 2, 2012, pp. 94-98.

[6] M. S. El Naschie, “A Review of E-Infinity and the Mass Spectrum of High Energy Particle Physics,” Chaos, Solitons & Fractals, Vol. 19, No. 1, 2004, pp. 209-236.
doi:10.1016/S0960-0779(03)00278-9

[7] M. S. El Naschie, “The Theory of Cantorian Spacetime and High Energy Particle Physics. (An Informal Review),” Chaos, Solitons & Fractals, Vol. 41, No. 5, 2009, pp. 2635-2646. doi:10.1016/j.chaos. 2008.09.059

[8] R. Penrose, “The Road to Reality,” Jonathan Cape, London, 2004.

[9] H. Coxeter, “The Beauty of Geometry,” Dover Publications, New York, 1999.

[10] H. Coxeter, “Regular Polytops,” Dover Publication, New York, 1973.

[11] I. Bengtsson and K. Zyczkowski, “Geometry of Quantum States,” Cambridge University Press, Cambridge, 2006.
doi:10.1017/CBO9780511535048

[12] P. Halpern, “The Great Beyond, Higher Dimensions, Parallel Universes and the Extraordinary Search for a Theory of Everything,” John Wiley, New Jersey, 2004.

[13] M. S. El Naschie, “Kaluza-Klein Unification—Some Possible Extensions,” Chaos, Solitons & Fractals, Vol. 37, No. 1, 2008, pp. 16-22. doi:10.1016/j.chaos.2007.09.079

[14] M. S. El Naschie and L. Marek-Crnjac, “Deriving the Exact Percentage of Dark Energy Using a Transfinite Version of Nottale’s Scale Relativity,” International Journal of Modern Nonlinear Theory and Application, Vol. 1, No. 4, 2012, pp. 118-124. doi:10.4236/ijmnta.2012.14018

[15] M. S. El Naschie, “Entanglement as a Consequence of a Cantorian Micro Spacetime Geometry,” Journal of Quantum Information Science, Vol. 1, No. 2, 2011, pp. 50-53.
doi:10.4236/jqis.2011.12007

[16] L. Amendola and S. Tsujikawa, “Dark Energy Theory and Observations,” Cambridge University Press, Cambridge, 2010.

[17] E. J. Copeland, M. Sami and S. Tsujikawa, “Dynamics of Dark Energy,” arxiv:hep-th/0603057V3, 2006.

[18] M. S. El Naschie, “A Resolution of Cosmic Dark Energy via a Quantum Entanglement Relativity Theory,” Journal of Quantum Information Science, Vol. 3, No. 1, 2013, pp. 23-26. doi:10.4236/jqis. 2013.31006

[19] L. Marek-Crnjac, M. S. El Naschie and J.-H. He, “Chaotic Fractals at the Root of Relativistic Quantum Physics and Cosmology,” International Journal of Modern Nonlinear Theory and Application, Vol. 2, No. 1A, 2013, pp. 78-88. doi:10.4236/ijmnta.2013.21A010

[20] V. V. Nesvizhevsky, “Study of Neutron Quantum States in Gravity Field,” The European Physical Journal, Vol. C40, 2005, p. 479. doi:10.1140/epjc/s2005-02135-y

[21] M. S. El Naschie, “Topological-Geometrical and Physical Interpretation of the Dark Energy of the Cosmos as a “Halo” Energy of the Schr?dinger Quantum Wave,” Journal of Modern Physics, Vol. 4, No. 5, 2013, pp. 591-596.
doi:10.4236/jmp.2013.45084

[22] M. R. Pahlavani, “Relativistic Schr?dinger Wave Equation for Hydrogen Atom Using Factorization Method,” Open Journal of Microphysics, Vol. 3, No. 1, 2013, pp. 1-7. doi:10.4236/ojm.2013.31001

[23] S. Clark, “Differently Equal,” New Scientist, Vol. 219, No. 2925, 2013, pp. 33-36.
doi:10.1016/S0262-4079(13)61751-0