ENG  Vol.5 No.9 , September 2013
Surface Modification on Ti-30Ta Alloy for Biomedical Application

Titanium and titanium alloys are currently being used for clinical biomedical applications due to their high strength, corrosion resistance and elastic modulus. The Ti-30Ta alloy has gotten extensive application as the important biomedical materials. The substrate surface of the Ti-30Ta alloy was altered either by chemical or topographical surface modification. The biocompatibility of an implant is closely related to its surface properties. Thus surface modification is one of effective methods for improving the biocompatibility of implants. The development status of biomedical materials has been summarized firstly, the biomedical application. In this study Ti-30Ta alloy surface was investigate as-casting (Group 1) modified with alkaline and heat-treatments in NaOH with 1.5M at 60°C for 24 hrs (Group 2), alkaline and heat-treatments with SBF-coatings by immersion in NaOH and SBFX5 for 24hrs (Group 3), anodization process was performed in an electrolyte solution containing HF (48%) and H2SO4 (98%) with the addition of 5% dimethyl sulfoxide (DMSO) 35V for 40 min (Group 4) and ion beam etching with 1200 eV ions with a beam current of 200 mA for a 3 hrs etch (Group 5). SEM was used to investigate the topography, EDS the chemical composition, and surface energy was evaluate with water contact angle measurement. SEM results show different structure on the surface for each group. EDS spectra identified similarity on Group 1, 4 and 5. The results indicate for group 2 an amorphous sodium tantalate hydrogel layer on the substrate surface and for group 3 the apatite nucleation on substrate surface. The Group 4 shows unorganized and vertically nanotubes and Group 5 shows a little alteration in the topography on the substrate surfaces. Overall the contact angle shows Group 5 the most hydrophobic and Group 4 the most hydrophilic. The study indicates Group 3 and 4 with potential for biomedical application. The next step the authors need to spend more time to study group 3 and 4 in the biomedical sciences.

Cite this paper: P. Capellato, N. Riedel, J. Williams, J. Machado, K. Popat and A. Claro, "Surface Modification on Ti-30Ta Alloy for Biomedical Application," Engineering, Vol. 5 No. 9, 2013, pp. 707-713. doi: 10.4236/eng.2013.59084.

[1]   B. P. M. Bannon and E. E. Titanium, “Alloys in Surgical Implants. Titanium Alloys for Biomaterial Application: An Overview,” 1983.

[2]   J. E. Ellingsen, P. Thomsen and S. P. Lyngstadaas, “Ad vances in Dental Implant Materials and Tissue Regenera tion,” Periodontology 2000, Vol. 41, No. 1, 2006, pp. 136-156.

[3]   M. Geetha, A. K. Singh, R. Asokamani and A. K. Gogia, “Ti Based Biomaterials, the Ultimate Choice for Ortho paedic Implants—A Review,” Progress in Materials Sci ence, Vol. 54, No. 3, 2009, pp. 397-425. doi:10.1016/j.pmatsci.2008.06.004

[4]   X. Liu, P. K. Chu and C. Ding, “Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications,” Materials Science and Engi neering: A, Vol. 47, No. 3-4, 2004, pp. 49-121. doi:10.1016/j.mser.2004.11.001

[5]   M. Niinomi, “Mechanical Biocompatibilities of Titanium Alloys for Biomedical Applications,” Journal of the Mechanical Behavior of Biomedical Materials, Vol. 1, No. 1, 2008, pp. 30-42.

[6]   K. Wang, “The Use of Titanium for Medical Applications in the USA,” Materials Science and Engineering, Vol. 213, No. 1, 1996, pp. 134-137. doi:10.1016/0921-5093(96)10243-4

[7]   J. O. Galante, J. Lemons, M. Spector, P. D. Wilson and T. M. Wright, “The Biologic Effects of Implant Materials,” Journal of Orthopaedic Research, Vol. 9, No. 5, 1991, pp. 760-775.

[8]   C. Palma-Carrió, D. Penarrocha-Oltra, M. A. Penarrocha Diago and M. Penarrocha-Diago, “Risk Factors Associ ated with Early Failure of Dental Implants—A Literature Review,” Medicina Oral Patologia Oral y Cirugia Bucal, Vol. 16, No. 4, 2011, pp. 514-517. doi:10.4317/medoral.16.e514

[9]   Y. L. Zhou and M. Niinomi, “Ti-25Ta Alloy with the Best Mechanical Compatibility in Ti-Ta Alloys for Bio medical Applications,” Materials Science and Engineer ing: C, Vol. 29, No. 3, 2009, pp. 1061-1065. doi:10.1016/j.msec.2008.09.012

[10]   Y. L. Zhou and M. Niinomi, “Microstructures and Me chanical Properties of Ti-50 Mass% Ta Alloy for Bio medical Applications,” Journal of Alloys and Compounds, Vol. 466, No. 1-2, 2008, pp. 535-542. doi:10.1016/j.jallcom.2007.11.090

[11]   Y. L. Zhou, M. Niinomi and T. Akahori, “Changes in Mechanical Properties of Ti Alloys in Relation to Alloy ing Additions of Ta and Hf,” Materials Science and En gineering: A, Vol. 483-484, 2008, pp. 153-156. doi:10.1016/j.msea.2006.09.173

[12]   Y. L. Zhou, M. Niinomi and T. Akahori, “Decomposition of Martensite [Alpha] during Aging Treatments and Re sulting Mechanical Properties of Ti-Ta Alloys,” Materials Science and Engineering A, Vol. 384, No. 1-2,2004, pp. 92-101. doi:10.1016/j.msea.2004.05.084

[13]   Y. L. Zhou, M. Niinomi and T. Akahori, “Effects of Ta Content on Young’s Modulus and Tensile Properties of Binary Ti-Ta Alloys for Biomedical Applications,” Mate rials Science and Engineering A, Vol. 371, No. 1-2, 2004, pp. 283 290. doi:10.1016/j.msea.2003.12.011

[14]   M. Niinomi, “Recent Metallic Materials for Biomedical Applications,” Metallurgical and Materials Transactions A, Vol. 33, No. 3, 2002, pp. 477-486. doi:10.1007/s11661-002-0109-2

[15]   T. Miyazaki, H. M. Kim, F. Miyaji, T. Kokubo, H. Kato and T. Nakamura, “Bioactive Tantalum Metal Prepared by NaOH Treatment,” Journal of Biomedical Materials Research, Vol. 50, 2000, pp. 35-42. doi:10.1002/(SICI)1097-4636(200004)50:1<35::AID-JBM6>3.0.CO;2-8

[16]   T. Miyazaki, H. M. Kim, T. Kokubo, C. Ohtsuki, H. Kato and T. Nakamura, “Enhancement of Bonding Strength by Graded Structure at Interface between Apatite Layer and Bioactive Tantalum Metal,” Journal of Materials Science: Materials in Medicine, Vol. 13, No. 7, 2002, pp. 651-655.

[17]   T. Miyazaki, H. M. Kim, T. Kokubo, C. Ohtsuki, H. Kato and T. Nakamura, “Effect of Thermal Treatment on Apa tite-Forming Ability of NaOH-Treated Tantalum Metal,” Journal of Materials Science: Materials in Medicine, Vol. 12, No. 8, 2001, pp. 683-687. doi:10.1023/A:1011260224120

[18]   D. Mareci, R. Chelariu, D.-M. Gordin, G. Ungureanu and T. Gloriant, “Comparative Corrosion Study of Ti-Ta Al loys for Dental Applications,” Acta Biomaterialia, Vol. 5, No. 9, 2009, pp. 3625-3639.

[19]   D. Wei, Y. Zhou, D. Jia and Y. Wang, “Structure of Cal cium Titanate/Titania Bioceramic Composite Coatings on Titanium Alloy and Apatite Deposition on Their Surfaces in a Simulated Body Fluid,” Surface and Coatings Technology, Vol. 201, No. 21, 2007, pp. 8715-8722. doi:10.1016/j.surfcoat.2007.04.124

[20]   F. Variola, F. Vetrone, L. Richert, P. Jedrzejowski, J.-H. Yi, S. Zalzal, et al., “Improving Biocompatibility of Implantable Metals by Nanoscale Modification of Surfaces: An Overview of Strategies, Fabrication Methods, and Challenges,” Small, Vol. 5, No. 9, 2009, pp. 996-1006. doi:10.1002/smll.200801186

[21]   E. Eisenbarth, D. Velten, M. Müller, R. Thull and J. Bre me, “Biocompatibility of [Beta]-Stabilizing Elements of Titanium Alloys,” Biomaterials, Vol. 25, No. 26, 2004, pp. 5705-5713.

[22]   G. Jianting, D. Ranucci and F. Gherardi, “Precipitation of β Phase in the γ’ Particles of Nickel-Base Superalloy,” Metallurgical and Materials Transactions A, Vol. 15, No. 7, 1984, pp. 1331-1334.

[23]   Z. Cai, M. Koike, H. Sato, M. Brezner, Q. Guo, M. Ko matsu, et al., “Electrochemical Characterization of Cast Ti-Hf Binary Alloys,” Acta Biomaterialia, Vol. 1, No. 3, 2005, pp. 353-356.

[24]   P. Gill, N. Munroe, C. Pulletikurthi, S. Pandya and W. Haider, “Effect of Manufacturing Process on the Bio compatibility and Mechanical Properties of Ti-30Ta Al loy,” Journal of Materials Engineering and Performance, Vol. 20, No. 4, 2011, pp. 819-823. doi:10.1007/s11665-011-9874-7

[25]   Y. L. Zhou, M. Niinomi, T. Akahori, H. Fukui and H. Toda, “Corrosion Resistance and Biocompatibility of Ti Ta Alloys for Biomedical Applications,” Materials Sci ence and Engineering A, Vol. 398, No. 1-2, 2005, pp. 28 36. doi:10.1016/j.msea.2005.03.032

[26]   Y. Tong, B. Guo, Y. Zheng, C. Chung and L. Ma, “Ef fects of Sn and Zr on the Microstructure and Mechanical Properties of Ti-Ta-Based Shape Memory Alloys,” Journal of Materials Engineering and Performance, Vol. 20, No. 4-5, 2011, pp. 762-766. doi:10.1007/s11665-010-9817-8

[27]   T. Gloriant, G. Texier, F. Prima, D. Laillé, D. M. Gordin, I. Thibon, et al., “Synthesis and Phase Transformations of Beta Metastable Ti-Based Alloys Containing Biocom patible Ta, Mo and Fe Beta-Stabilizer Elements,” Advanced Engineering Materials, Vol. 8, No. 10, 2006, pp. 961-965.

[28]   A. Dobromyslov, G. Dolgikh, Y. Dutkevich and T. Tre nogina, “Phase and Structural Transformations in Ti-Ta Alloys,” The Physics of Metals and Metallography, Vol. 107, No. 5, 2009, pp. 502-510.

[29]   B. S. Smith, S. Yoriya, L. Grissom, C. A. Grimes and K. C. Popat, “Hemocompatibility of Titania Nanotube Arrays,” Journal of Biomedical Materials Research Part A, Vol. 95A, No. 2, 2010, pp. 350-360.

[30]   X. J. Wang, Y. C. Li, J. G. Lin, Y. Yamada, P. D. Hodgson and C. E. Wen, “In Vitro Bioactivity Evaluation of Titanium and Niobium Metals with Different Surface Morphologies,” Acta Biomaterialia, Vol. 4, No. 5, 2008, pp. 1530-1535. doi:10.1016/j.actbio.2008.04.005

[31]   P. Habibovic, T. M. Sees, M. A. van den Doel, C. A. van Blitterswijk and K. de Groot, “Osteoinduction by Biomaterials—Physicochemical and Structural Influences,” Journal of Biomedical Materials Research Part A, Vol. 77A, No. 4, 2006, pp. 747-762. doi:10.1002/jbm.a.30712

[32]   T. Kokubo, H. M. Kim, M. Kawashita, “Novel Bioactive Materials with Different Mechanical Properties,” Bioma terials, Vol. 24, No. 13, 2003, pp. 2161-2175. doi:10.1016/S0142-9612(03)00044-9

[33]   A. Nicholas, J. D. W. Riedel and C. Ketul Popat, “Ion Beam Etching Titanium for Enhanced Osteoblast Respon se,” Journal Material Science, Vol. 46, No. 18, 2011, pp. 6087-6095. doi:10.1007/s10853-011-5571-z

[34]   E. Martínez, E. Engel, J. A. Planell and J. Samitier, “Ef fects of Artificial Micro and Nano-Structured Surfaces on Cell Behaviour,” Annals of Anatomy—Anatomischer Anzeiger, Vol. 191, No. 1, 2009, pp. 126-135. doi:10.1016/j.aanat.2008.05.006

[35]   H.-M. Kim, F. Miyaji, T. Kokubo and T. Nakamura, “Preparation of Bioactive Ti and Its Alloys via Simple Chemical Surface Treatment,” Journal of Biomedical Ma terials Research, Vol. 32, No. 3, 1996, pp. 409-417. doi:10.1002/(SICI)1097-4636(199611)32:3<409::AID-JBM14>3.0.CO;2-B

[36]   H. Kato, T. Nakamura, S. Nishiguchi, Y. Matsusue, M. Kobayashi, T. Miyazaki, et al., “Bonding of Alkali and Heat-Treated Tantalum Implants to Bone,” Journal of Biomedical Materials Research, Vol. 53, No. 1, 2000, pp. 28-35. doi:10.1002/(SICI)1097-4636(2000)53:1<28::AID-JBM4>3.0.CO;2-F

[37]   T. Miyazaki, H.-M. Kim, T. Kokubo, C. Ohtsuki, H. Kato and T. Nakamura, “Mechanism of Bonelike Apatite For mation on Bioactive Tantalum Metal in a Simulated Body Fluid,” Biomaterials, Vol. 23, No. 3, 2002, pp. 827-832. doi:10.1016/S0142-9612(01)00188-0

[38]   F. Barrere, C. A. van Blitterswijk, K. de Groot and P. Layrolle, “Influence of Ionic Strength and Carbonate on the Ca-P Coating Formation from SBF×5 Solution,” Bio materials,” Vol. 23, No. 9, 2002, pp. 1921-1930. doi:10.1016/S0142-9612(01)00318-0

[39]   C. Han-Cheol, “Nanotubular Surface and Morphology of Ti-Binary and Ti-Ternary Alloys for Biocompatibility,” Thin Solid Films, Vol. 519, No. 15, 2011, pp. 4652-4657.

[40]   H. Tsuchiya, T. Akaki, J. Nakata, D. Terada, N. Tsuji, Y. Koizumi, et al., “Anodic Oxide Nanotube Layers on Ti Ta Alloys: Substrate Composition, Microstructure and Self-Organization on Two-Size Scales,” Corrosion Sci ence, Vol. 51, No. 7, 2009, pp. 1528-1533. doi:10.1016/j.corsci.2008.11.011

[41]   N. K. Allam, X. J. Feng and C. A. Grimes, “Self-Assem bled Fabrication of Vertically Oriented Ta2O5 Nanotube Arrays, and Membranes Thereof, by One-Step Tantalum Anodization,” Chemistry of Materials, Vol. 20, No. 20, 2008, pp. 6477-6481. doi:10.1021/cm801472y

[42]   J.-H. Choee, S. J. Lee, Y. M. Lee, J. M. Rhee, H. B. Lee and G. Khang, “Proliferation Rate of Fibroblast Cells on Polyethylene Surfaces with Wettability Gradient,” Jour nal of Applied Polymer Science, Vol. 92, No. 1, 2004, pp. 599-606. doi:10.1002/app.20048

[43]   G. Zhao, Z. Schwartz, M. Wieland, F. Rupp, J. Geis Gerstorfer, D. L. Cochran, et al., “High Surface Energy Enhances Cell Response to Titanium Substrate Micro structure,” Journal of Biomedical Materials Research Part A, Vol. 74, No. 1, 2005, pp. 49-58. doi:10.1002/jbm.a.30320

[44]   L. Le Guéhennec, A. Soueidan, P. Layrolle and Y. Amouriq, “Surface Treatments of Titanium Dental Implants for Ra pid Osseointegration,” Dental Materials, Vol. 23, No. 7, 2007, pp. 844-854.

[45]   A. L. A. Escada, D. Rodrigues Jr., J. P. B. Machado and A. P. R. A. Claro, “Surface Characterization of Ti-7.5Mo Alloy Modified by Biomimetic Method,” Surface and Coatings Technology, Vol. 205, No. 2, 2010, pp. 383-387. doi:10.1016/j.surfcoat.2010.06.067

[46]   M. Wei, M. Uchida, H.-M. Kim, T. Kokubo and T. Na kamura, “Apatite-Forming Ability of CaO-Containing Titania,” Biomaterials, Vol. 23, No. 1, 2002, pp. 167-172. doi:10.1016/S0142-9612(01)00092-8

[47]   W.-F. Ho, W.-K. Chen, S.-C. Wu and H.-C Hsu, “Struc ture, Mechanical Properties, and Grindability of Dental Ti-Zr Alloys,” Journal of Materials Science: Materials in Medicine, Vol. 19, No. 10, 2008, pp. 3179-3186. doi:10.1007/s10856-008-3454-x

[48]   H. B. Wen, J. G. C. Wolke, J. R. de Wijn, Q. Liu, F. Z. Cui and K. de Groot, “Fast Precipitation of Calcium Phosphate Layers on Titanium Induced by Simple Chemi cal Treatments,” Biomaterials, Vol. 18, No. 22, 1997, pp. 1471-1478. doi:10.1016/S0142-9612(97)82297-1

[49]   O. Zinger, K. Anselme, A. Denzer, P. Habersetzer, M. Wieland, J. Jeanfils, et al., “Time-Dependent Morphology and Adhesion of Osteoblastic Cells on Titanium Model Surfaces Featuring Scale-Resolved Topography,” Bioma terials, Vol. 25, No. 14, 2004, pp. 2695-2711.