CMB  Vol.3 No.3 , September 2013
Evaluation of CDK6 and p16/INK4a-Derived Peptides Interaction
ABSTRACT
 The goal of this work is the development of novel peptides with high efficacy of inhibiting activity of CDK6/CyclinD complex. The peptides were derived from primary sequence of P16 protein and its homologues. The interactions between CDK6 and P16/INK4a-derived peptides are studied with molecular dynamics simulation employing umbrella sampling method. The SASA implicit solvent model was used for simulation, which was accelerated using NVIDIA GPUs.

Cite this paper
Kazennov, A. , Alekseenko, A. , Bozhenko, V. , Kulinich, T. , Shuvalov, N. and Kholodov, Y. (2013) Evaluation of CDK6 and p16/INK4a-Derived Peptides Interaction. Computational Molecular Bioscience, 3, 53-57. doi: 10.4236/cmb.2013.33007.
References
[1]   A. Hughes, “CDK Inhibitors in 3D: Problems with the Drugs, Their Development Plans or Their Linkage to Disease?” Gene therapy & Molecular Biology, Vol. 10, 2006, pp. 41-54.

[2]   O. Fedorov, B. Marsden, V. Pogacic, P. Rellos and S. Müller, “A Systematic Interaction Map of Validated Kinase Inhibitors with Ser/Thr Kinases,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 104, No. 51, 2007, pp. 20523-20528. doi:10.1073/pnas.0708800104

[3]   V. P. Kharchenko, V. K. Bojenko, T. M. Kulinich, V. G. Lunin, Ye. I. Filyasova, A. M. Shishkin, O. V. Sergueenko, Ye. M. Ryazanova and O. L. Voronina, “Cytotoxity of Chimera Peptides Incorporating Sequences of Cycline Kinases Inhibitors,” Voprosy Oncologii, Vol. 53, No. 4, 2007, pp. 448-452.

[4]   M. Lindgrena, M. H?llbrinka, A. Prochiantzb and ü. Langela, “Cell-Penetrating Peptides,” Trends in Pharmacol- ogical Sciences, Vol. 21, No. 3, 2000, pp. 99-103. doi:10.1016/S0165-6147(00)01447-4

[5]   A. Zhmurov, O. Kononova, R. I. Litvinov, R. I. Dima, V. Barsegov and J. W. Weisel, “Mechanical Transition from α-Helical Coiled Coils to β-Sheets in Fibrin(ogen),” Journal of the American Chemical Society, Vol. 134, No. 50, 2012, pp. 20396-20402. doi:10.1021/ja3076428

[6]   B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan and M. Karplus, “CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations,” Journal of Computational Chemistry, Vol. 4, No. 2, 1983, pp. 187-217. doi:10.1002/jcc.540040211

[7]   P. Ferrara, J. Apostolakis and A. Caflisch, “Evaluation of a Fast Implicit Solvent Model for Molecular Dynamics Simulations,” Proteins, Vol. 46, No. 1, 2002, pp. 24-33. doi:10.1002/prot.10001

[8]   F. Fraternali and W. F. van Gunsteren, “An Efficient Mean Solvation Force Model for Use in Molecular Dynamics Simulations of Proteins in Aqueous Solution,” Journal of Molecular Biology, Vol. 256, No. 5, 1996, pp. 939-948. doi:10.1006/jmbi.1996.0139

[9]   D. Eisenberg and A. D. McLachlan, “Solvation Energy in Protein Folding and Binding,” Nature, Vol. 319, 1986, pp. 199-203. doi:10.1038/319199a0

[10]   P. W. Hinds, S. Mittnacht, V. Dulic, A. Arnold, S. I. Reed and R. A. Weinberg, “Regulation of Retinoblastoma Protein Functions by Ectopic Expression of Human Cyclins,” Cell, Vol. 70, No. 6, 1992, pp. 993-1006. doi:10.1016/0092-8674(92)90249-C

[11]   C. W. Miller, A. Aslo, M. J. Campbell, N. Kawamata, B. C. Lampkin and H. P. Koeffler, “Alterations of the p15, p16, and p18 Genes in Osteosarcoma,” Cancer Genetics and Cytogenetics, Vol. 86, No. 2, 1996, pp. 36-142. doi:10.1016/0165-4608(95)00216-2

[12]   W. H. Liggett and D. Sidransky, “Role of the p16 Tumor Suppressor Gene in Cancer,” Journal of Clinical Oncology: official Journal of the American Society of Clinical Oncology, Vol. 16, No. 3, 1998, pp. 1197-1206.

[13]   J. Newton Bishop, M. Harland, D. С. Bennett, V. Bataille, M. Goldstein, et al., “Mutation Testing in Melanoma Families: INK4A, CDK4 and INK4D,” British Journal of Cancer, Vol. 80, No. 1-2, 1999, pp. 295-300. doi:10.1038/sj.bjc.6690354

[14]   T. M. Becker, H. Rizos, R. F. Kefford and G. J. Mann, “Functional Impairment of Melanoma-Associated p16-(INK4a) Mutants in Melanoma Cells Despite Retention of Cyclin-Dependent Kinase 4 Binding,” Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, Vol. 7, No. 10, 2001, pp. 3282-3288.

[15]   R. F?hraeus, J. M. Paramio, K. L. Ball, S. Laín and D. P. Lane, “Inhibition of pRb Phosphorylation and Cell-Cycle Progression by a 20-Residue Peptide from p16CDKN2/ INK4A,” Current Biology, Vol. 6, No.1, 1996, pp. 84-91. doi:10.1016/S0960-9822(02)00425-6

[16]   R. F?hraeus, S. Laín, K. L. Ball and D. P. Lane, “Characterization of the Cyclin-Dependent Kinase Inhibitory Domain of the INK4 Family as a Model for a Synthetic Tumour Suppressor Molecule,” Oncogene, Vol. 16, No. 5, 1998, pp. 587-596. doi:10.1038/sj.onc.1201580

[17]   P. D. Jeffrey, “Structural Basis of Inhibition of CDK-Cyclin Complexes by INK4 Inhibitors,” Genes & Development, Vol. 14, No. 24, 2000, pp. 3115-3125. doi:10.1101/gad.851100

[18]   N. P. Pavletich, “Mechanisms of Cyclin-Dependent Kinase Regulation: Structures of Cdks, Their Cyclin Activators, and Cip and INK4 Inhibitors,” Journal of Molecular biology, Vol. 287, No. 5, 1999, pp. 821-828. doi:10.1006/jmbi.1999.2640

[19]   D. H. Brotherton, V. Dhanaraj, S. Wick, L. Brizuela, P. J. Domaille, et al., “Crystal Structure of the Complex of the cyclin D-Dependent Kinase Cdk6 Bound to the Cell-Cycle Inhibitor p19INK4d,” Nature, Vol. 395, No. 6699, 1998, pp. 244-250. doi:10.1038/26164

[20]   A. A. Russo, L. Tong, J. O. Lee, P. D. Jeffrey and N. P. Pavletich, “Structural Basis for Inhibition of the Cyclin-Dependent Kinase Cdk6 by the Tumour Suppressor p16INK4a,” Nature, Vol. 395, No. 6699, 1998, pp. 237-243. doi:10.1038/26155

[21]   O. Trott and A. J. Olson, “AutoDockVina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading,” Journal of Computational Chemistry, Vol. 31, No. 2, 2010, pp. 455-461. doi:10.1002/jcc.21334

[22]   G. M. Torrie and J. P. Valleau, “Nonphysical Sampling Distributions in Monte Carlo Free-Energy Estimation: Umbrella Sampling,” Journal of Computational Physics, Vol. 23, No. 2, 1977, pp. 187-199. doi:10.1016/0021-9991(77)90121-8

[23]   S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen and P. A. Kollman, “The Weighted Histogram Analysis Method for Free-Energy Calculations on Biomolecules. I. The Method,” Journal of Computational Chemistry, Vol. 13, No. 2, 1992, pp. 1011-1021. doi:10.1002/jcc.540130812

[24]   A. Grossfield, “WHAM: The Weighted Histogram Analysis Method”. http://membrane.urmc.rochester.edu/content/wham

 
 
Top