JCT  Vol.4 No.7 , September 2013
The MMTV-PyVT Transgenic Mouse as a Multistage Model for Mammary Carcinoma and the Efficacy of Antineoplastic Treatment
Abstract: Animal models are commonly used to analyze the mechanism of carcinogenesis as well as the development and screening of potent drugs. Although numerous animal models of breast cancer have been used in research, few display multiple stages of tumorigenesis. The transgenic strain FVB/N-Tg(MMTV-PyVT) 634 Mul/J (also known as PyVT) was established to determine the effect of mammary gland-specific expression of the polyomavirus middle T antigen. Here the PyVT model with three distinct stages of tumor development (Pre, Early, and Late stages) was used as a model system for measuring tumor growth, tumor burden, and metastasis of mammary carcinomas. Additionally the expression profile of the molecular markers, survivin and Ki-67, was determined. Three antineoplastic compounds were tested over a 14-day period to determine their efficacy at attenuating tumor growth at each stage of development. Interestingly cisplatin and paclitaxel were determined to be ineffective anticancer drugs, while tamoxifen significantly reduced tumor growth in the Pre and Early stages of tumor formation.
Cite this paper: S. Shishido, A. Delahaye, A. Beck and T. Nguyen, "The MMTV-PyVT Transgenic Mouse as a Multistage Model for Mammary Carcinoma and the Efficacy of Antineoplastic Treatment," Journal of Cancer Therapy, Vol. 4 No. 7, 2013, pp. 1187-1197. doi: 10.4236/jct.2013.47138.

[1]   T. Vargo-Gogola and J. M. Rosen, “Modelling Breast Cancer: One Size Does Not Fit All,” Nature Reviews. Cancer, Vol. 7, No. 9, 2007, pp. 659-672. doi:10.1038/nrc2193

[2]   C. T. Guy, R. D. Cardiff and W. J. Muller, “Induction of Mammary Tumors by Expression of Polyomavirus Middle T Oncogene: A Transgenic Mouse Model for Metastatic Disease,” Molecular and Cellular Biology, Vol. 12, No. 3, 1992, pp. 954-961.

[3]   M. A. Webster, J. N. Hutchinson, M. J. Rauh, S. K. Muthuswamy, M. Anton, C. G. Tortorice, et al., “Requirement for Both Shc and Phosphatidylinositol 3 Kinase Signaling Pathways in Polyomavirus Middle T-Mediated Mammary Tumorigenesis,” Molecular and Cellular Biology, Vol. 18, 1998, pp. 2344-2359.

[4]   E. Y. Lin, J. G. Jones, P. Li, L. Zhu, K. D. Whitney, W. J. Muller, et al., “Progression to Malignancy in the Polyoma Middle T Oncoprotein Mouse Breast Cancer Model Provides a Reliable Model for Human Diseases,” The American Journal of Pathology, Vol. 163, 2003, pp. 2113-2126. doi:10.1016/S0002-9440(10)63568-7

[5]   J. E. Maglione, D. Moghanaki, L. J. Young, C. K. Manner, L. G. Ellies, S. O. Joseph, et al., “Transgenic Polyoma Middle-T Mice Model Premalignant Mammary Disease,” Cancer Research, Vol. 61, No. 22, 2001, pp. 8298-8305.

[6]   G. M. Clark, C. K. Osborne and W. L. McGuire, “Correlations between Estrogen Receptor, Progesterone Receptor, and Patient Characteristics in Human Breast Cancer,” Journal of Clinical Oncology, Vol. 2, 1984, pp. 1102-1109.

[7]   X. Sastre-Garau, M. Jouve, B. Asselain, A. Vincent-Salomon, P. Beuzeboc, T. Dorval, et al., “Infiltrating Lobular Carcinoma of the Breast. Clinicopathologic Analysis of 975 Cases with Reference to Data on Conservative Therapy and Metastatic Patterns,” Cancer, Vol. 77, No. 1, 1996, pp. 113-120. doi:10.1002/(SICI)1097-0142(19960101)77:1<113::AID-CNCR19>3.0.CO;2-8

[8]   D. J. Slamon, G. M. Clark, S. G. Wong, W. J. Levin, A. Ullrich and W. L. McGuire, “Human Breast Cancer: Correlation of Relapse and Survival with Amplification of the Her-2/Neu Oncogene,” Science, Vol. 235, No. 4785, 1987, pp. 177-182. doi:10.1126/science.3798106

[9]   S. A. Aziz, S. Pervez, S. Khan, N. Kayani, S. I. Azam and M. H. Rahbar, “Case Control Study of Prognostic Markers and Disease Outcome in Inflammatory Carcinoma Breast: A Unique Clinical Experience,” The Breast Journal, Vol. 7, No. 6, 2001, pp. 398-404. doi:10.1046/j.1524-4741.2001.07604.x

[10]   S. Haupt, M. Berger, Z. Goldberg and Y. Haupt, “Apoptosis—The P53 Network,” Journal of Cell Science, Vol. 116, No. 20, 2003, pp. 4077-4085. doi:10.1242/jcs.00739

[11]   S. Jin and A. J. Levine, “The P53 Functional Circuit,” Journal of Cell Science, Vol. 114, No. 23, 2001, pp. 4139-4140.

[12]   C. G. Ferreira, C. Tolis and G. Giaccone, “P53 and Chemosensitivity,” Annals of Oncology: Official Journal of the European Society for Medical Oncology, Vol. 10, 1999, pp. 1011-1021.

[13]   D. Kandioler-Eckersberger, C. Ludwig, M. Rudas, S. Kappel, E. Janschek, C. Wenzel, et al., “Tp53 Mutation and P53 Overexpression for Prediction of Response to Neoadjuvant Treatment in Breast Cancer Patients,” Clinical Cancer Research, Vol. 6, No. 1, 2000, pp. 50-56.

[14]   C. Adida, P. L. Crotty, J. McGrath, D. Berrebi, J. Diebold and D. C. Altieri, “Developmentally Regulated Expression of the Novel Cancer Anti-Apoptosis Gene Survivin in Human and Mouse Differentiation,” The American Journal of Pathology, Vol. 152, No. 1, 1998, pp. 43-49.

[15]   D. C. Altieri, “Validating Survivin as a Cancer Therapeutic Target,” Nature Reviews. Cancer, Vol. 3, No. 1, 2003, pp. 46-54. doi:10.1038/nrc968

[16]   G. Ambrosini, C. Adida and D. C. Altieri, “A Novel AntiApoptosis Gene, Survivin, Expressed in Cancer and Lymphoma,” Nature Medicine, Vol. 3, No. 8, 1997, pp. 917-921. doi:10.1038/nm0897-917

[17]   T. Dohi, E. Beltrami, N. R. Wall, J. Plescia and D. C. Altieri, “Mitochondrial Survivin Inhibits Apoptosis and Promotes Tumorigenesis,” Journal of Clinical Investigation, Vol. 114, No. 8, 2004, pp. 1117-1127. doi:10.1172/JCI22222

[18]   F. Lopez, F. Belloc, F. Lacombe, P. Dumain, J. Reiffers, P. Bernard, et al., “Modalities of Synthesis of Ki67 Antigen during the Stimulation of Lymphocytes,” Cytometry, Vol. 12, 1991, pp. 42-49. doi:10.1002/cyto.990120107

[19]   P. Kronqvist, T. Kuopio, M. Nykanen, H. Helenius, J. Anttinen and P. Klemi, “Predicting Aggressive Outcome in T1n0m0 Breast Cancer,” British Journal of Cancer, Vol. 91, No. 2, 2004, pp. 277-281. doi:10.1038/sj.bjc.6601948

[20]   C. Oakman, S. Bessi, E. Zafarana, F. Galardi, L. Biganzoli and A. Di Leo, “Recent Advances in Systemic Therapy: New Diagnostics and Biological Predictors of Outcome in Early Breast Cancer,” Breast Cancer Research, Vol. 11, No. 2, 2009, p. 205. doi:10.1186/bcr2238

[21]   E. W. Thompson, J. Torri, M. Sabol, C. L. Sommers, S. Byers, E. M. Valverius, et al., “Oncogene-Induced Basement Membrane Invasiveness in Human Mammary Epithelial Cells,” Clinical & Experimental Metastasis, Vol. 12, No. 3, 1994, pp. 181-194. doi:10.1007/BF01753886

[22]   C. Xue, D. Plieth, C. Venkov, C. Xu and E. G. Neilson, “The Gatekeeper Effect of Epithelial-Mesenchymal Transition Regulates the Frequency of Breast Cancer Metastasis,” Cancer Research, Vol. 63, 2003, pp. 3386-3394.

[23]   E. D. Hay and A. Zuk, “Transformations between Epithelium and Mesenchyme—Normal, Pathological, and Experimentally-Induced,” American Journal of Kidney Diseases, Vol. 26, 1995, pp. 678-690. doi:10.1016/0272-6386(95)90610-X

[24]   M. A. Huber, N. Kraut and H. Beug, “Molecular Requirements for Epithelial-Mesenchymal Transition during Tumor Progression,” Current Opinion in Cell Biology, Vol. 17, No. 5, 2005, pp. 548-558. doi:10.1016/

[25]   H. Uehara, M. Miyamoto, K. Kato, Y. Ebihara, H. Kaneko, H. Hashimoto, et al., “Expression of Pigment Epithelium-Derived Factor Decreases Liver Metastasis and Correlates with Favorable Prognosis for Patients with Ductal Pancreatic Adenocarcinoma,” Cancer Research, Vol. 64, 2004, pp. 3533-3537. doi:10.1158/0008-5472.CAN-03-3725

[26]   N. Gava, C. L. Clarke, K. Byth, R. L. Arnett-Mansfield and A. deFazio, “Expression of Progesterone Receptors a and B in the Mouse Ovary during the Estrous Cycle,” Endocrinology, Vol. 145, No. 7, 2004, pp. 3487-3494. doi:10.1210/en.2004-0212

[27]   M. Vasei, N. Azarpira and A. Talei, “Status of Estrogen and Progesterone Receptors in Various Phases of the Menstrual Cycle in Breast Cancer,” Archives of Iranian medicine, Vol. 9, No. 3, 2006, pp. 250-253.

[28]   P. Roger, M. E. Sahla, S. Makela, J. A. Gustafsson, P. Baldet and H. Rochefort, “Decreased Expression of Estrogen Receptor Beta Protein in Proliferative Preinvasive Mammary Tumors,” Cancer Research, Vol. 61, No. 6, 2001, pp. 2537-2541.

[29]   E. Leygue, H. Dotzlaw, P. H. Watson and L. C. Murphy, “Altered Estrogen Receptor Alpha and Beta Messenger Rna Expression During Human Breast Tumorigenesis,” Cancer Research, Vol. 58, No. 15, 1998, pp. 3197-3201.

[30]   B. S. Shoker, C. Jarvis, R. B. Clarke, E. Anderson, J. Hewlett, M. P. A. Davies, et al., “Estrogen Receptor-Positive Proliferating Cells in the Normal and Precancerous Breast,” American Journal of Pathology, Vol. 155, No. 6, 1999, pp. 1811-1815.

[31]   D. C. Altieri, “Survivin, Versatile Modulation of Cell Division and Apoptosis in Cancer,” Oncogene, Vol. 22, No. 53, 2003, pp. 8581-8589. doi:10.1038/sj.onc.1207113

[32]   P. Fortugno, E. Beltrami, J. Plescia, J. Fontana, D. Pradhan, P. C. Marchisio, et al., “Regulation of Survivin Function by Hsp90,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 100, No. 24, 2003, pp. 13791-13796. doi:10.1073/pnas.2434345100

[33]   Z. Y. Song, X. B. Yao and M. Wu, “Direct Interaction between Survivin and Smac/Diablo Is Essential for the Anti-Apoptotic Activity of Survivin during Taxol-Induced Apoptosis,” Journal of Biological Chemistry, Vol. 278, No. 25, 2003, pp. 23130-23140. doi:10.1074/jbc.M300957200

[34]   A. Suzuki and K. Shiraki, “Tumor Cell “Dead or Alive: Caspase and Survivin Regulate Cell Death, Cell Cycle and Cell Survival,” Histology and Histopathology, Vol. 16, No. 2, 2001, pp. 583-593.

[35]   A. Mirza, M. McGuirk, T. N. Hockenberry, Q. Wu, H. Ashar, S. Black, et al., “Human Survivin Is Negatively Regulated by Wild-Type P53 and Participates in P53-Dependent Apoptotic Pathway,” Oncogene, Vol. 21, No. 17, 2002, pp. 2613-2622. doi:10.1038/sj.onc.1205353

[36]   R. V. Sionov and Y. Haupt, “The Cellular Response to P53: The Decision between Life and Death,” Oncogene, Vol. 18, No. 45, 1999, pp. 6145-6157. doi:10.1038/sj.onc.1203130

[37]   B. Vogelstein, D. Lane and A. J. Levine, “Surfing the P53 Network,” Nature, Vol. 408, No. 6810, 2000, pp. 307-310.

[38]   L. Wang, Q. Wu, P. Qiu, A. Mirza, M. McGuirk, P. Kirschmeier, et al., “Analyses of P53 Target Genes in the Human Genome by Bioinformatic and Microarray Approaches,” The Journal of Biological Chemistry, Vol. 276, No. 47, 2001, pp. 43604-43610. doi:10.1074/jbc.M106570200

[39]   V. Theodorou, M. A. Kimm, M. Boer, L. Wessels, W. Theelen, J. Jonkers, et al., “Mmtv Insertional Mutagenesis Identifies Genes, Gene Families and Pathways Involved in Mammary Cancer,” Nature Genetics, Vol. 39, No. 6, 2007, pp. 759-769. doi:10.1038/ng2034

[40]   Y. Yin, Z. Yang and S. Zhang, “Combined Treatment with Exogenous Estradiol and Progesterone Increases the Incidence of Breast Cancer in Ta2 Mice without Ovaries,” Cancer Letters, Vol. 311, No. 2, 2011, pp. 171-176. doi:10.1016/j.canlet.2011.07.011

[41]   J. F. Glover and P. D. Darbre, “Multihormone Regulation of Mmtv-Ltr in Transfected T-47-D Human Breast Cancer Cells,” Journal of Steroid Biochemistry, Vol. 32, 1989, pp. 357-363. doi:10.1016/0022-4731(89)90207-0

[42]   R. Fuchs-Young, S. H. Shirley, I. Lambertz, J. K. Colby, J. Tian, D. Johnston, et al., “P53 Genotype as a Determinant of Er Expression and Tamoxifen Response in the Mmtv-Wnt-1 Model of Mammary Carcinogenesis,” Breast Cancer Research and Treatment, Vol. 130, No. 2, 2011, pp. 399-408. doi:10.1007/s10549-010-1308-y

[43]   S. Menard, P. Aiello, E. Tagliabue, C. Rumio, P. L. Lollini, M. I. Colnaghi, et al., “Tamoxifen Chemoprevention of a Hormone-Independent Tumor in the Proto-Neu Transgenic Mice Model,” Cancer Research, Vol. 60, No. 2, 2000, pp. 273-275.

[44]   P. Nanni, G. Nicoletti, C. De Giovanni, L. Landuzzi, E. Di Carlo, M. Iezzi, et al., “Prevention of Her-2/Neu Transgenic Mammary Carcinoma by Tamoxifen Plus Interleukin 12,” International Journal of Cancer, Vol. 105, No. 3, 2003, pp. 384-389. doi:10.1002/ijc.11092

[45]   N. Sidell, N. Kirma, E. T. Morgan, H. Nair and R. R. Tekmal, “Inhibition of Estrogen-Induced Mammary Tumor Formation in Mmtv-Aromatase Transgenic Mice by 4-Chlorophenylacetate,” Cancer Letters, Vol. 251, 2007, pp. 302-310. doi:10.1016/j.canlet.2006.11.031