A Family of 4-Point n-Ary Interpolating Scheme Reproducing Conics

Show more

References

[1] M. K. Jena, P. Shunmugaraj and P. C. Das, “A Non-Stationary Subdivision Scheme for Curve Interpolation,” ANZIAM Journal, Vol. 44, No. E, 2003, pp. 216-235.

[2] J. Yoon, “Analysis of Non-Stationary Interpolatory Subdivision Schemes Based on Exponential Polynomials,” Geometric Modeling and Processing, Vol. 4077, 2006, pp. 563-570.

[3] C. Beccari, G. Casciola and L. Romani, “A Non-Stationary Uniform Tension Controlled Interpolating 4-Point Scheme Reproducing Conics,” Computer Aided Geometric Design, Vol. 24, No. 1, 2007, pp. 1-9.
doi:10.1016/j.cagd.2006.10.003

[4] S. Daniel and P. Shunmugaraj, “Some Interpolating Non-Stationary Subdivision Schemes,” International Symposium on Computer Science and Society, Kota Kinabalu, 16-17 July 2011, pp. 400-403.
doi:10.1109/ISCCS.2011.110

[5] G. Deslauriers and S. Dubuc, “Symmetric Iterative Interpolation Processes,” Constructive Approximation, Vol. 5, No. 1, 1989, pp. 49-68. doi:10.1007/BF01889598

[6] N. Dyn and D. Levin, “Analysis of Asymptotically Equivalent Binary Subdivision Schemes,” Journal of Mathematical Analysis and Applications, Vol. 193, No. 2, 1995, pp. 594-621. doi:10.1006/jmaa.1995.1256

[7] N. Dyn and D. Levin, “Subdivision Schemes in Geometric Modelling,” Acta Numerica, Vol. 11, 2002, pp. 73-144.
doi:10.1017/S0962492902000028

[8] R. Klen, M. Lehtonen and M. Vuorinen, “On Jordan Type Inequalities for Hyperbolic Functions,” Journal of Inequalities and Applications, Vol. 2010, 2010, Article ID: 362548.