Scaling and Orbits for an Isotropic Metric

Affiliation(s)

College of Integrated Science and Engineering, James Madison University, Harrisonburg, USA.

College of Integrated Science and Engineering, James Madison University, Harrisonburg, USA.

ABSTRACT

Conventional interpretation of the Einstein Equation has inconsistencies and contradictions, such as gravitational fields without energy, objects crossing event-horizons, objects exceeding the speed of light, and inconsistency in scaling the speed of light and its factors. An isotropic metric resolves such problems by attributing energy to the gravitational field, in the Einstein Equation. This paper discusses symmetries of an isotropic metric, including scaling of physical quantities, the Lorentz transformation, covariant derivatives, and stress-energy tensors, and transitivity of this scaling between inertial reference frames. Force, charge, Planck’s constant, and the fine structure constant remain invariant under isotropic gravitational scaling. Gravitational scattering, orbital period, and precession distinguish between isotropic and Schwarzschild metrics. An isotropic metric accommodates quantum mechanics and improves models of black-holes.

KEYWORDS

Gravitation; Scaling; Orbits; Black Hole Physics; Celestial Mechanics; Relativistic Processes

Gravitation; Scaling; Orbits; Black Hole Physics; Celestial Mechanics; Relativistic Processes

Cite this paper

J. Rudmin, "Scaling and Orbits for an Isotropic Metric,"*Journal of Modern Physics*, Vol. 4 No. 8, 2013, pp. 1-6. doi: 10.4236/jmp.2013.48A001.

J. Rudmin, "Scaling and Orbits for an Isotropic Metric,"

References

[1] S. B. Giddings, Physics Today, Vol. 66, 2013, pp. 30-35. doi:10.1063/PT.3.1946

[2] D. M. Eardley and L. Smarr, Physical Review D, Vol. 19, 1979, pp. 2239-2259. doi:10.1103/PhysRevD.19.2239

[3] J. D. Rudmin, Virginia Journal of Science, Vol. 58, 2007, pp. 27-33.

[4] H. Yilmaz, Physical Review, Vol. 111, 1958, pp. 1417-1426. doi:10.1103/PhysRev.111.1417

[5] C. W. Misner, K. S. Thorne and J. A. Wheeler, “Gravitation,” W. H. Freeman and Company, San Francisco, 1973.

[6] T. Alexander, Physics Reports, Vol. 419, 2005, Article ID: 65142.

[7] R. Genzel and V. Karas, “The Galactic Center,” Proceedings of the International Astronomical Union Symposium, Prague, 21-25 August 2007, pp. 173-180.

[1] S. B. Giddings, Physics Today, Vol. 66, 2013, pp. 30-35. doi:10.1063/PT.3.1946

[2] D. M. Eardley and L. Smarr, Physical Review D, Vol. 19, 1979, pp. 2239-2259. doi:10.1103/PhysRevD.19.2239

[3] J. D. Rudmin, Virginia Journal of Science, Vol. 58, 2007, pp. 27-33.

[4] H. Yilmaz, Physical Review, Vol. 111, 1958, pp. 1417-1426. doi:10.1103/PhysRev.111.1417

[5] C. W. Misner, K. S. Thorne and J. A. Wheeler, “Gravitation,” W. H. Freeman and Company, San Francisco, 1973.

[6] T. Alexander, Physics Reports, Vol. 419, 2005, Article ID: 65142.

[7] R. Genzel and V. Karas, “The Galactic Center,” Proceedings of the International Astronomical Union Symposium, Prague, 21-25 August 2007, pp. 173-180.