FNS  Vol.4 No.9 , September 2013
Plasma Accumulations of Vitamin B6 from an Oral Dose in a New Reversible Model for Mouse Gut Injury and Regeneration
Abstract: Chemically based rodent models are used to assess the positive effects promoted by foods and gut microbiota on gut health. Lectins with enzymatic activity, such as type 2 ribosome-inactivating proteins, might also prove useful for exploring these issues. Sub-lethal doses of the lectin nigrin from Sambucus nigra L. to mice promoted reversible derangement of gut epithelium by induction of apoptosis of transit amplifying cells of the small intestine crypts in a time-dependent course. The present work seeks to study vitamin B6 accumulation in plasma from an oral bolus in a mouse nigrin model. 24 h after sub-lethal nigrin b treatment, there was clear body weight reduction associated to a notable increase in Evan’s blue stain accumulation in excised small intestine, an increase in myeloperoxidase activity, and a near 50% reduction in plasma accumulation of vitamin B6. Histological analysis of small intestine sections of nigrin b-treated animals also revealed significant derangement of intestinal crypts. Seventy two hours after nigrin b treatment, stain uptake decreased and vitamin B6 accumulation was almost restored despite villi derangement. Large intestine crypts were scarcely or not at all affected. Eight days after nigrin b treatment, vitamin B6 uptake and intestinal crypt structure had fully recovered. The nigrin b mice model supports the view that, under these conditions, the carrier-mediated vitamin B6 uptake component of the small intestine crypts is probably the most active when the vitamin is administered orally as a bolus. The findings provide insights into the suitability of the present mice model for nutritional or drug absorption studies in conditions of partially altered or injured intestinal mucosa.
Cite this paper: P. Jiménez, D. Cordoba-Diaz, P. Cabrero, M. Aracil, M. Gayoso, M. Garrosa, M. Cordoba-Diaz and T. Girbés, "Plasma Accumulations of Vitamin B6 from an Oral Dose in a New Reversible Model for Mouse Gut Injury and Regeneration," Food and Nutrition Sciences, Vol. 4 No. 9, 2013, pp. 908-917. doi: 10.4236/fns.2013.49118.

[1]   F. Radtke and H. Clevers, “Self-Renewal and Cancer of the Gut: Two Sides of a Coin,” Science, Vol. 307, No. 5717, 2005, pp. 1904-1909. doi:10.1126/science.1104815

[2]   L. Li and H. Clevers, “Coexistence of Quiescent and Ac tive Adult Stem Cells in Mammals,” Science, Vol. 327, No. 5965, 2010, pp. 542-545. doi:10.1126/science.1180794

[3]   D. K. Podolsky, “Inflammatory Bowel Disease,” The New England Journal of Medicine, Vol. 347, No. 6, 2002, pp. 417-429. doi:10.1056/NEJMra020831

[4]   R. J. Xavier and D. K. Podolsky, “Unravelling the Patho genesis of Inflammatory Bowel Disease,” Nature, Vol. 448, No. 7152, 2007, pp. 427-434. doi:10.1038/nature06005

[5]   S. Asfar, S. Abdeen, H. Dashti, M. Khoursheed, H. Al Sayer, T. Mathew and A. Al-Bader, “Effect of Green Tea in the Prevention and Reversal of Fasting-Induced Intes tinal Mucosal Damage,” Nutrition, Vol. 19, No. 6, 2003, pp. 536-540. doi:10.1016/S0899-9007(02)01097-3

[6]   R. K. Grewal and A. Mahmood, “A Shift in Microvillus Membrane Fucosylation to Sialylation by Ethanol Inges tion in Rat Intestine,” Molecular and Cellular Biochemis try, Vol. 331, No. 1-2, 2009, pp. 19-25. doi:10.1007/s11010-009-0140-3

[7]   B. J. Campbell, L. G. Yu and J. M. Rhodes, “Altered Gly cosylation in Inflammatory Bowel Disease: A Possible Role in Cancer Development,” Glycoconjugate Journal, Vol. 18, No. 11-12, 2001, pp. 851-858. doi:10.1023/A:1022240107040

[8]   A. R. Jurjus, N. N. Khoury and J. M. Reimund, “Animal Models of Inflammatory Bowel Disease,” Journal of Pharmacological and Toxicological Methods, Vol. 50, No. 2, 2004, pp. 81-92.

[9]   S. Salminen, C. Bouley, M. C. Boutron-Ruault, J. H. Cummings, A. Franck, G. R. Gibson, E. Isolauri, M. C. Moreau, M. Roberfroid and I. Rowland, “Functional Food Science and Gastrointestinal Physiology and Function,” British Journal of Nutrition, Vol. 80, No. S1, 1998, pp. S147-S171. doi:10.1079/BJN19980108

[10]   C. Cherbut, C. Michel and G. Lecannu, “The Prebiotic Characteristics of Fructooligosaccharides Are Necessary for Reduction of TNBS-Induced Colitis in Rats,” Journal of Nutrition, Vol. 133, No. 1, 2003, pp. 21-27.

[11]   H. Satoh, T. Hara, D. Murakawa, M. Matsuura and K. Takata, “Soluble Dietary Fibber Protects against Nonster oidal Anti-Inflammatory Drug-Induced Damage to the Small Intestine in Cats,” Digestive Diseases and Sciences, Vol. 55, No. 5, 2010, pp. 1264-1271. doi:10.1007/s10620-009-0893-2

[12]   T. Nishimura, A. Andoh, T. Hashimoto, A. Kobori, T. Tsujikawa and Y. Fujiyama, “Cellobiose Prevents the Development of Dextran Sulfate Sodium (DSS)-Induced Experimental Colitis,” Journal of Clinical Biochemistry and Nutrition, Vol. 46, No. 2, 2010, pp. 105-110. doi:10.3164/jcbn.09-72

[13]   M. Roberfroid, G. R. Gibson, L. Hoyles, A. L. McCart ney, R. Rastall, I. Rowland, D. Wolvers, B. Watzl, H. Szajewska, B. Stahl, F. Guarner, F. Respondek, K. Whe lan, V. Coxam, M. J. Davicco, L. Léotoing, Y. Wittrant, N. M. Delzenne, P. D. Cani, A. M. Neyrinck and A. Me heust, “Prebiotic Effects: Metabolic and Health Benefits,” British Journal of Nutrition, Vol. 104, No. S2, 2010, pp. S1-S63.

[14]   K. Ishiguro, T. Ando, O. Maeda, O. Watanabe and H. Goto, “Novel Mouse Model of Colitis Characterized by Hapten-Protein Visualization,” BioTechniques, Vol. 49, No. 3, 2010, pp. 641-648.

[15]   S. Wirtz, C. Neufert, B. Weigmann and M. F. Neurath, “Chemically Induced Mouse Models of Intestinal Inflam mation,” Nature Protocols, Vol. 2, No. 3, 2007, pp. 541-546. doi:10.1038/nprot.2007.41

[16]   M. J. Lord, N. A. Jolliffe, C. J. Marsden, C. S. Pateman, D. C. Smith, R. A. Spooner, P. D. Watson and L. M. Ro berts, “Ricin. Mechanisms of Cytotoxicity,” Toxicologi cal Reviews, Vol. 22, No. 1, 2003, pp. 53-64. doi:10.2165/00139709-200322010-00006

[17]   R. F. Brown and D. E. White, “Ultrastructure of Rat Lung Following Inhalation of Ricin Aerosol,” International Journal of Experimental Pathology, Vol. 78, No. 4, 1997, pp. 267-276. doi:10.1046/j.1365-2613.1997.300363.x

[18]   S. M. Bradberry, K. J. Dickers, P. Rice, G. D. Griffiths and J. A. Vale, “Ricin Poisoning,” Toxicological Reviews, Vol. 22, No. 1, 2003, pp. 65-70. doi:10.2165/00139709-200322010-00007

[19]   J. N. Hughes, C. D. Lindsay and G. D. Griffiths, “Mor phology of Ricin and Abrin Exposed Endothelial Cells Is Consistent with Apoptotic Cell Death,” Human and Ex perimental Toxicology, Vol. 15, No. 5, 1996, pp. 443-451. doi:10.1177/096032719601500513

[20]   G. D. Griffiths, M .D. Leek and D. J. Gee, “The Toxic Plant Proteins Ricin and Abrin Induce Apoptotic Changes in Mammalian Lymphoid Tissues and Intestine,” The Journal of Pathology, Vol. 151, No. 3, 1987, pp. 221-229. doi:10.1002/path.1711510310

[21]   D. R. Franz, P. B. Jahrling, A. M. Friedlander, D. J. Mc Clain, D. L. Hoover, W. R. Bryne, J. A. Pavlin, G. W. Christopher and E. M. Eitzen Jr., “Clinical Recognition and Management of Patients Exposed to Biological War fare Agents,” The Journal of the American Medical Asso ciation, Vol. 278, No. 5, 1997, pp. 399-411. doi:10.1001/jama.1997.03550050061035

[22]   F. Musshoff and B. Madea, “Ricin Poisoning and Foren sic Toxicology,” Drug Testing and Analysis, Vol. 1, No. 4, 2009, pp. 184-191. doi:10.1002/dta.27

[23]   M. Puri, I. Kaur, M. A. Perugini and R. C. Gupta, “Ribo some-Inactivating Proteins: Current Status and Biomedi cal Applications,” Drug Discovery Today, Vol. 17, No. 13-14, 2012, pp. 774-783.

[24]   T. Girbés, J. M. Ferreras, F. J. Arias and F. Stirpe, “De scription, Distribution, Activity and Phylogenetic Rela tionship of Ribosome-Inactivating Proteins in Plants, Fungi and Bacteria,” Mini Reviews in Medicinal Chemis try, Vol. 4, No. 5, 2004, pp. 461-476. doi:10.2174/1389557043403891

[25]   W. J. Peumans and E. J. Van Damme, “Lectins as Plant Defence Proteins,” Plant Physiology, Vol. 109, No. 2, 1995, pp. 347-352. doi:10.1104/pp.109.2.347

[26]   T. Girbés, C. de Torre, R. Iglesias, J. M. Ferreras and E. Méndez, “RIP for Viruses,” Nature, Vol. 379, 1996, pp. 777-778. doi:10.1038/379777b0

[27]   L. Barbieri, M. Ciani, T. Girbés, W. Liu, E. Van Damme, W. Peumans and F. Stirpe, “Enzymatic Activity of Toxic and Non-Toxic Type 2 Ribosome-Inactivating Proteins,” FEBS Letters, Vol. 563, No. 1-3, 2004, pp. 219-222. doi:10.1016/S0014-5793(04)00286-8

[28]   Y. Endo and K. Tsurugi, “The RNA N-Glycosidase Ac tivity of Ricin A-Chain. The Characteristics of the Enzy matic Activity of Ricin A-Chain with Ribosomes and with rRNA,” The Journal of Biological Chemistry, Vol. 263, No. 18, 1988, pp. 8735-8739. doi:10.1016/S0041-0101(96)00225-5

[29]   T. Girbés, L. Citores, J. M. Ferreras, M. A. Rojo, R. Igle sias, R. Munoz, F. J. Arias, M. Calonge, J. R. García and E. Méndez, “Isolation and Partial Characterization of Ni grin b, a Non-Toxic Novel Type 2 Ribosome-Inactivating Protein from the Bark of Sambucus nigra L,” Plant Mo lecular Biology, Vol. 22, No. 6, 1993, pp. 1181-1186. doi:10.1007/BF00028990

[30]   L. Citores, F. M. de Benito, R. Iglesias, J. M. Ferreras, P. Jiménez, P. Argüeso, G. Farias, E. Méndez and T. Girbés, “Isolation and Characterization of a New Non-Toxic Two-Chain Ribosome-Inactivating Protein from Fruits of Elder (Sambucus nigra L.),” Journal of Experimental Botany, Vol. 47, No. 10, 1996, pp. 1577-1585. doi:10.1093/jxb/47.10.1577

[31]   P. Jiménez, M. Gayoso, J. Tejero, P. Cabrero, D. Cor doba-Diaz, J. E. Basterrechea and T. Girbes, “Toxicity in Mice of Lectin Ebulin f in Dwarf Elder (Sambucus ebulus L.),” Toxicon, Vol. 61, No. 1, 2013, pp. 26-29. doi:10.1016/j.toxicon.2012.10.009

[32]   L. Citores, F. M. de Benito, R. Iglesias, J. M. Ferreras, P. Argüéso, P. Jiménez, E. Méndez and T. Girbés, “Presence of Polymerized and Free Forms of the Non-Toxic Type 2 Ribosome-Inactivating Protein Ebulin and a Structurally Related New Homodimeric Lectin in Fruits of Sambucus ebulus L.,” Planta, Vol. 204, No. 3, 1998, pp. 310-319. doi:10.1007/s004250050261

[33]   M. G. Battelli, L. Citores, L. Buonamici, J. M. Ferreras, F. M. de Benito, F. Stirpe and T. Girbés, “Toxicity and Cy totoxicity of Nigrin b, a Two-Chain Ribosome-Inactivat ing Protein from Sambucus nigra: A Comparison with Ricin,” Archives of Toxicology, Vol. 71, No. 6, 1997, pp. 360-364.

[34]   R. Munoz, Y. Arias, J. M. Ferreras, P. Jiménez, M. A. Rojo and T. Girbés, “Sensitivity of Several Cancer Cell Lines to Ricin and the Novel Type 2 Ribosome-Inacti vating Protein Nigrin b,” Cancer Letters, Vol. 167, No. 2, 2001, pp. 163-169. doi:10.1016/S0304-3835(01)00477-3

[35]   M. G. Battelli, S. Musiani, L. Buonamici, S. Santi, M. Riccio, N. M. Maraldi, T. Girbés and F. Stirpe, “Interac tion of Volkensin with HeLa Cells: Binding, Uptake, In tracellular Localization, Degradation and Exocytosis,” Cellular and Molecular Life Sciences, Vol. 61, No. 15, 2004, pp. 1975-1984.

[36]   M. J. Gayoso, R. Munoz, Y. Arias, R. Villar, M. A. Rojo, P. Jiménez, J. M. Ferreras, I. Aránguez and T. Girbés, “Specific Dose-Dependent Damage of Lieberkühn Crypts Promoted by Large Doses of Type 2 Ribosome-Inacti vating Protein Nigrin b Intravenous Injection to Mice,” Toxicology and Applied Pharmacology, Vol. 207, No. 2, 2005, pp. 138-146.

[37]   P. Jiménez, J. Tejero, P. Cabrero, D. Cordoba-Diaz and T. Girbes, “Differential Sensitivity of D-Galactose-Binding Lectins from Fruits of Dwarf Elder (Sambucus ebulus L.) to a Simulated Gastric Fluid,” Food Chemistry, Vol. 136, No. 2, 2013, pp. 794-902. doi:10.1016/j.foodchem.2012.09.011

[38]   P. Bauer, C. W. Lush, P. R. Kvietys, J. M. Russell and D. N. Granger, “Role of Endotoxin in the Expression of En dothelial Selectins after Cecal Ligation and Perforation,” American Journal of Physiology Regulatory, Integrative and Comparative, Vol. 278, No. 5, 2000, pp. R1140-R1147.

[39]   V. F. Kalb Jr. and R. W. Bernlohr, “A New Spectropho tometric Assay for Protein in Cell Extracts,” Analytical Biochemistry, Vol. 82, No. 2, 1977, pp. 362-371. doi:10.1016/0003-2697(77)90173-7

[40]   J. M. Ferreras, L. Citores, R. Iglesias, P. Jiménez, A. M. Souza, M. Gayoso and T. Girbés, “Occurrence and New Procedure of Preparation of Nigrin, an Antiribosomal Lectin Present in Elderberry Bark,” Food Research Inter national, Vol. 44, No. 9, 2011, pp. 2798-2805. doi:10.1016/j.foodres.2011.06.004

[41]   E. Gonzalez-Rey, A. Fernandez-Martin, A. Chorny and M. Delgado, “Therapeutic Effect of Urocortin and Adreno medullin in a Murine Model of Crohn’s Disease,” Gut, Vol. 55, No. 6, 2006, pp. 824-832.

[42]   Y. Ogawa, K. Kanatsu, T. Iino, S. Kato, Y. I. Jeong, N. Shibata, K. Takada and K. Takeuchi, “Protection against Dextran Sulfate Sodium-Induced Colitis by Microspheres of Ellagic Acid in Rats,” Life Sciences, Vol. 71, No. 7, 2002, pp. 827-839. doi:10.1016/S0024-3205(02)01737-X

[43]   P. F. Chatzimichalakis, V. F. Samanidou, R. Verpoorte and I. N. Papadoyannis, “Development of a Validated HPLC Method for the Determination of B-Complex Vita mins in Pharmaceuticals and Biological Fluids after Solid Phase Extraction,” Journal of Separation Science, Vol. 27, No. 14, 2004, pp. 1181-1188. doi:10.1002/jssc.200401858

[44]   H. M. Said, “Recent Advances in Carrier-Mediated Intes tinal Absorption of Water-Soluble Vitamins,” Annual Re view of Physiology, Vol. 66, 2004, pp. 419-446.

[45]   Z. M. Said, V. S. Subramanian, N. D. Vaziri and H. M. Said, “Pyridoxine Uptake by Colonocytes: A Specific and Regulated Carrier-Mediated Process,” American Journal of Physiology Cell Physiology, Vol. 294, No. 5, 2008, pp. C1192-C1197. doi:10.1152/ajpcell.00015.2008

[46]   F. Stirpe and M. G. Battelli, “Ribosome-Inactivating Pro teins: Progress and Problems,” Cellular and Molecular Life Sciences, Vol. 63, No. 16, 2006, pp. 1850-1866. doi:10.1007/s00018-006-6078-7