Back
 EPE  Vol.5 No.6 , August 2013
Real-Time Implementation of Solar Inverter with Novel MPPT Control Algorithm for Residential Applications
Abstract: Solar energy is a fast growing energy resource among the renewable energy resources in the market and potential for solar power is huge to contribute towards the power demand almost in all the countries. To capture the maximum power from the sun light in order to generate maximum power from the inverter, control system must be an equally efficient with the well designed power electronic circuits. Maximum power point tracking (MPPT) control system in general is taking care of extraction of maximum power from the sun light whereas current controller is mainly designed to optimize the inverter power to feed to power grid. In this paper, a novel MPPT algorithm using neuro fuzzy system is presented to ensure the maximum MPPT efficiency in order to ensure the maximum power across the inverter terminals. Simulation and experimental results for residential solar system with power electronic converters and analysis have been presented in this paper in order to prove the proposed algorithm.
Cite this paper: Ahmad, A. and Loganathan, R. (2013) Real-Time Implementation of Solar Inverter with Novel MPPT Control Algorithm for Residential Applications. Energy and Power Engineering, 5, 427-435. doi: 10.4236/epe.2013.56046.
References

[1]   H. Patel and V. Agarwal, “MPPT Scheme for a PV-Fed Single-Phase Single-Stage Grid-Connected Inverter Operating in CCM With Only One Current Sensor,” IEEE Transactions on Energy Conversion, Vol. 24, No. 1, 2009, pp. 256-263. doi:10.1109/TEC.2008.2005282

[2]   G. Escobar, et al., “PV Current Sensorless MPPT for a Single-Phase PV Inverter,” IECON 2011—The 37th Annual Conference on IEEE Industrial Electronics Society, Melbourne, 7-10 November 2011, pp. 3906-3911.

[3]   N. Kasa, T. Iida and L. Chen, “Fly Back Inverter Controlled by Sensorless Current MPPT for Photovoltaic Power System,” IEEE Transactions on Industrial Electronics, Vol. 52, No. 4, 2005, pp. 1145-1152. doi:10.1109/TIE.2005.851602

[4]   O. Lopez-Lapena, Penella, M.T. and M. Gasulla, “A New MPPT Method for Low-Power Solar Energy Harvesting,” IEEE Transactions on Industrial Electronics, Vol. 57, No. 9, 2010, pp. 3129-3138. doi:10.1109/TIE.2009.2037653

[5]   R. Leyva, C. Alonso, I. Queinnec, A. Cid-Pastor, D. Lagrange and L. Martinez-Salamero, “MPPT of Photovoltaic Systems Using Extremum-Seeking Control,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 42 , No. 1, 2006, pp. 249-258. doi:10.1109/TAES.2006.1603420

[6]   N. Mutoh, M. Ohno and T. A. Inoue, “Method for MPPT Control While Searching for Parameters Corresponding to Weather Conditions for PV Generation Systems,” IEEE Transactions on Industrial Electronics, Vol. 53, No. 4, 2006, pp. 1055-1065. doi:10.1109/TIE.2006.878328

[7]   N. Fermia, D. Granozio, G. Petrone and M. Vitelli, “Predictive & Adaptive MPPT Perturb and Observe Method,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 43, No. 3, 2007, pp. 934-950. doi:10.1109/TAES.2007.4383584

[8]   N. Femia, G. Petrone, G. Spagnuolo and M. Vitelli, “A Technique for Improving P&O MPPT Performances of Double-Stage Grid-Connected Photovoltaic Systems,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 11, 2009, pp. 4473-4482. doi:10.1109/TIE.2009.2029589

[9]   A. K. Abdelsalam, A. M. Massoud, S. Ahmed, P. N. Enjeti, “High-Performance Adaptive Perturb and Observe MPPT Technique for Photovoltaic-Based Microgrids,” IEEE Transactions on Power Electronics, Vol. 26, No. 4, 2011, pp. 1010-1021. doi:10.1109/TPEL.2011.2106221

[10]   D. Sera, R. Teodorescu and J. Hantschel, “Optimized Maximum Power Point Tracker for Fast-Changing Environmental Conditions,” IEEE Transactions on Industrial Electronics, Vol. 55, No. 7, 2008, pp. 2629-2637. doi:10.1109/TIE.2008.924036

[11]   G. Carannante, C. Fraddanno, M. Pagano and L. Piegari, “Experimental Performance of MPPT Algorithm for Photovoltaic Sources Subject to Inhomogeneous Isolation,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 11, 2009, pp. 4374-4380. doi:10.1109/TIE.2009.2019570

[12]   Q. Mei, M. W. Shan, L. Y. Liu and J. M. Guerrero, “A Novel Improved Variable Step-Size Incremental-Resistance MPPT Method for PV Systems,” IEEE Transactions on Industrial Electronics, Vol. 58, No. 6, 2011, pp. 2427-2434. doi:10.1109/TIE.2010.2064275

[13]   F. R. Liu, S. X. Duan, F. Liu, B. Y. Liu and Y. Kang, “A Variable Step Size INC MPPT Method for PV Systems,” IEEE Transactions on Industrial Electronics, Vol. 55, No. 7, 2008, pp. 2622-2628. doi:10.1109/TIE.2008.920550

[14]   Z. Cheng, H. Z. Yang and Y. Sun, “FPGA-Based PV Systems Fuzzy MPPT Control Algorithm,” 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Vol. 3, Yantai, 10-12 August 2010, pp. 1244-1248. doi:10.1109/FSKD.2010.5569127

[15]   Matlab/Simulink—Tool and User Guide, 201.

 
 
Top