AiM  Vol.3 No.5 , September 2013
Production of Invertases by Anamorphic (Aspergillus nidulans) and Teleomorphic (Emericela nidulans) Fungi under Submerged Fermentation Using Rye Flour as Carbon Source
ABSTRACT

The production of invertases by anamorph (A. nidulans) and teleomorph (E. nidulans) was investigated. The best level of extracellular enzymatic production for anomorph was obtained in Khanna medium containing sucrose as carbon source, whereas for teleomorph the best production was archived using M5 medium containing inulin as carbon source. Despite this, rye flour was selected as carbon source. The extracellular enzyme production was higher for teleomorph than that observed for anomorph for all carbon sources used. The enzyme production was inhibited by the addition of fructose and glucose in the medium containing rye flour as carbon source. The best conditions to recover the higher enzymatic activity were temperature of 54 - 62 and pH of 4.8 5.6 for both enzymes determined by experimental design (CCRD). The stability of the temperatures at 40 and 50were similar for both enzymes. The invertases from the anomorph and teleomorph were activated by Mn2+, but the response of each one towards the presence of this cation was different with best activation observed for the anomorph enzyme (+80%). The extracellular enzymes were able to hydrolyze inulin, sucrose and raffinose. However, the affinity was higher for sucrose than inulin. In conclusion, the carbon source assimilation and the invertase production, as well as the enzymes properties, were different for the anomorph and teleomorph mycelia.


Cite this paper
J. Alves, J. Jorge and L. Guimarães, "Production of Invertases by Anamorphic (Aspergillus nidulans) and Teleomorphic (Emericela nidulans) Fungi under Submerged Fermentation Using Rye Flour as Carbon Source," Advances in Microbiology, Vol. 3 No. 5, 2013, pp. 421-429. doi: 10.4236/aim.2013.35057.
References
[1]   A. C. P. Alegre, M. L. T. M. Polizeli, H. F. Terenzi, J. A. Jorge and L. H. S. Guimaraes, “Production of Thermostable Invertases by Aspergillus caespitosus under Submerged or Solid State Fermentation Using Agroindustral Residues as Carbon Source,” Brazilian Journal of Microbiology, Vol. 40, No. 3, 2009, pp. 612-622. doi:10.1590/S1517-83822009000300025

[2]   A. K. Balasubramaniem, K. V. Nagarajan and G. Paramasamy, “Optimization of Media for β-Fructofuranosidase Production by Aspergillus niger in Submerged and Solid State Fermentation,” Process Biochemistry, Vol. 36, No. 12, 2001, pp. 1241-1247. doi:10.1016/S0032-9592(01)00166-2

[3]   M. A. Giraldo, T. M. Silva, F. Salvato, H. F. Terenzi, J. A. Jorge and L. H. S. Guimaraes, “Thermostable Invertases from Paecylomyces variotii Produced under Submerged and Solid-State Fermentation Using Agroindustrial Residues,” World Journal of Microbiology and Biotechnology, Vol. 28, No. 2, 2012, pp. 463-472. doi:10.1007/s11274-011-0837-9

[4]   B. Wolska-Mitaszko, J. Jaroszuk-Scise and K. Pszeniczn, “Isoforms of Trehalase and Invertase of Fusarium oxysporum,” Mycological Research, Vol. 111, No. 4, 2001, pp. 456-465. doi:10.1016/j.mycres.2007.01.018

[5]   A. J. Goulart, P. R. Adalberto and R. Monti, “Purificacao Parcial de Invertase a Partir de Rhizopus sp. em Fermentacao Semi-Sólida,” Alimentacao e Nutricao, Vol. 14, No. 2, 2003, pp. 199-203.

[6]   L. Novaki, S. D. M. Hasan, M. K. Kadowaki and D. Andrade, “Producao de Invertase por Fermentacao em Estado Sólido a Partir de Farelo de Soja,” Engevista, Vol. 12, No. 2, 2010, pp. 131-140.

[7]   W. Gams and K. A. Seifert, “Anamorphic Fungi,” In: Encyclopedia of Life Science (ELS), John Wiley & Sons, Ltd., Chichester, 2008. doi:10.1002/9780470015902.a0000351.pub2

[8]   D. M. Geiser, “Sexual Structures in Aspergillus: Morphology, Importance and Genomics,” Medical Mycology, Vol. 47, No. S1, 2009, pp. S21-S26. doi:10.1080/13693780802139859

[9]   P. Khanna, S. S. Sundari and N. J. Kumar, “Production, Isolation and Partial Purification of Xylanase from Aspergillus sp.,” World Journal of Microbiology and Biotechnology, Vol. 11, No. 2, 1995, pp. 242-243. doi:10.1007/BF00704661

[10]   R. M. Peralta, H. F. Terenzi and J. A. Jorge, “β-D Glycosidase Activities of Humicola grisea: Biochemical and Kinetic Characterization of a Multifunctional Enzyme,” Biochemica et Biophysica Acta, Vol. 1033, No. 3, 1990, pp. 243-249. doi:10.1016/0304-4165(90)90127-I

[11]   G. L. Miller, “Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar,” Analytical Chemistry, Vol. 31, No. 3, 1959, pp. 427-429. doi:10.1021/ac60147a030

[12]   O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall, “Protein Measurement with the Folin Phenol Reagent,” Journal of Biological Chemistry, Vol. 193, 1951, pp. 265-275.

[13]   P. Krijgsheld, R. Bleichrodit, G. J. van Veluw, F. Wang, W. H. Müller, J. Dijksterhuis and H. A. B. Wosten, “Development in Aspergillus,” Studies in Mycology, Vol. 74, No. 1, 2013, pp. 1-29. doi:10.3114/sim0006

[14]   A. P. MacCabe, M. Orejas, F. N. Tamayo, A. Villanueva and D. Ramon, “Improving Extracellular Production of Food-Use Enzymes from Aspergillus nidulans,” Jounal of Biotechnology, Vol. 96, No. 1, 2002, pp. 43-54. doi:10.1016/S0168-1656(02)00036-6

[15]   G. L. F. Wallis, F. W. Hemming and J. F. Peberdy, “Secretion of Two β-Fructofuranosidases by Aspergillus niger Growing in Sucrose,” Archieves of Biochemistry and Biophysics, Vol. 345, No. 2, 1997, pp. 214-222. doi:10.1006/abbi.1997.0228

[16]   M. C. Rubio, M. C. Maldonado, P. Aznar and A. Navarro, “Production y Caracterizacion de uma Invertasa Extracellular de Penicillium glabrum,” La Alimentacion Latinoamerica, Vol. 247, 2003, pp. 40-45.

[17]   R. Trumbly, “Glucose Repression in the Yeast Saccharomyces cerevisiae,” Molecular Microbiology, Vol. 6, No. 1, 1992, pp. 15-21. doi:10.1111/j.1365-2958.1992.tb00832.x

[18]   J. Dynesen, H. P. Smits, L. Olsson and J. Nielsen, “Carbon Catabolite Repression of Invertase during Batch Cultivations of Saccharomyces cerevisiae: The Role of Glucose, Fructose and Mannose,” Applied Microbiology and Biotechnology, Vol. 50, No. 5, 1998, pp. 579-582. doi:10.1007/s002530051338

[19]   M. C. Rubio and A. R. Navarro, “Regulation of Invertase Synthesis in Aspergillus niger,” Enzyme and Microbial Technology, Vol. 39, No. 4, 2006, pp. 601-606. doi:10.1016/j.enzmictec.2005.11.011

[20]   P. P. Reddy, G. S. Reddy and M. B. Sulochana, “Highly Termostable β-Fructofuranosidase from Aspergillus niger PSSF21 and Its Application in the Synthesis of Fructooligosacharides from Agro Industrial Residue,” Asian Journal of Biotechnology, Vol. 2, No. 2, 2010, pp. 86-98.

[21]   C. Uma, D. Gomathi, C. Muthulakshmi and V. K. Golapalakrishnnan, “Production, Purification and Characterization of Invertases by Aspergillus flavus Using Fruit Peel Was as Substrate,” Advances in Biological Research, Vol. 4, No. 1, 2010, pp. 31-36.

[22]   H. N. Bhatti, A. Muhammad, A. Abbas, R. Nawaz and M. A. Sheikh, “Studies on Kinetics and Thermostability of Novel Acid Invertase from Fusarium solani,” Journal of Agriculture and Food Chemistry, Vol. 54, No. 13, 2006, pp. 4617-4623. doi:10.1021/jf053194g

[23]   K. Shafiq, S. Ali and I. Ul-Hag, “Effect of Different Mineral Nutrients on Invertase Production by Saccharomyces cerevisiae GCB-K5,” Biotechnology, Vol. 1, 2002, pp. 40-44. doi:10.3923/biotech.2002.40.44

[24]   L. H. S. Guimaraes, A. F. Somera, H. F. Terenzi, M. L. T. M. Polizeli and J. A. Jorge, “Production of β-Fructofuranosidases by Aspergillus niveus Using Agroindustrial Residues as Carbon Sources: Characterization of an Intracellular Enzyme Accumulated in the Presence of Glucose,” Process Biochemistry, Vol. 44, No. 2, 2009, pp. 237-241. doi:10.1016/j.procbio.2008.10.011

[25]   Q. D. Nguyen, J. M. Rezessy-Szabó, M. K. Bhat and á. Hoschke, “Purification and Some Properties of β-Fructofuranosidase from Aspergillus niger IMI 303386,” Process Biochemistry, Vol. 40, No. 7, 2005, pp. 2461-2466. doi:10.1016/j.procbio.2004.09.012

[26]   C. B. Rustiguel, A. H. C. Oliveira, H. F. Terenzi, J. A. Jorge and L. H. S. Guimaraes, “Biochemical Properties of an Extracellular β-D-Fructofuranosidase II Produced by Aspergillus phoenicis under Solid-Sate Fermentation Using Soy Bran as Substrate,” Electronic Journal of Biotechnology, Vol. 14, No. 2, 2011.

[27]   L. H. S. Guimaraes, H. F. Terenzi, M. L. T. M. Polizeli and J. A. Jorge, “Production and Characterization of a Thermostable Extracellular β-D-Fructofuranosidase Produced by Aspergillus ochraceus with Agroindustrial Residues as Carbon Sources,” Enzyme and Microbial Technology, Vol. 42, No. 1, 2007, pp. 52-57. doi:10.1016/j.enzmictec.2007.07.021

 
 
Top