Recursive Estimation for Continuous Time Stochastic Volatility Models Using the Milstein Approximation

Show more

References

[1] A. Thavaneswaran and M. E. Thompson, “A Criterion for Filtering in Semimartingale Models,” Stochastic Processes and Their Applications, Vol. 28, No. 2, 1988, pp. 259-265. doi:10.1016/0304-4149(88)90099-3

[2] A. Thavaneswaran and M. E. Thompson, “Optimal Estimation for Semimartingales,” Journal of Applied Probability, Vol. 23, No. 2, 1986, pp. 409-417.
doi:10.2307/3214183

[3] S. Taylor, “Asset Price Dynamics, Volatility, and Prediction,” Princeton University Press, Princeton, 2011.

[4] S. L. Heston and S. Nandi, “A Closed-Form GARCH Option Valuation Model,” The Review of Financial Studies, Vol. 13, No. 3, 2000, pp. 585-625.
doi:10.1093/rfs/13.3.585

[5] H. Kawakatsu, “Specification and Estimation of Discrete time Quadratic Stochastic Volatility Models,” Journal of Empirical Finance, Vol. 14, No. 3, 2007, pp. 424-442.
doi:10.1016/j.jempfin.2006.07.001

[6] U. V. Naik-Nimbalkar and M. B. Rajarshi, “Filtering and Smoothing via Estimating Functions,” Journal of the American Statistical Association, Vol. 90, No. 429, 1995, pp. 301-306. doi:10.1080/01621459.1995.10476513

[7] M. E. Thompson and A. Thavaneswaran, “Filtering via Estimating Functions,” Applied Mathematics Letters, Vol. 12, No. 5, 1999, pp. 61-67.
doi:10.1016/S0893-9659(99)00058-0

[8] A. Thavaneswaran, Y. Liang and N. Ravishanker, “Inference for Diffusion Processes Using Combined Estimating Functions,” Sri Lankan Journal of Applied Statistics, Vol. 12, No. 1, 2012, pp. 145-160.

[9] T. Koulis and A. Thavaneswaran, “Inference for Interest Rate Models Using Milstein’s Approximation,” Journal of Mathematical Finance, Vol. 3, No. 1, 2013, pp. 110-118. doi:10.4236/jmf.2013.31010

[10] H. Gong and A. Thavaneswaran, “Recursive Estimation for Continuous Time Stochastic Volatility Models,” Applied Mathematics Letters, Vol. 22, No. 11, 2009, pp. 1770-1774. doi:10.1016/j.aml.2009.06.014

[11] M. Jeong and J. Y. Park, “Asymptotic Theory of Maximum Likelihood Estimator for Diffusion Model,” Working Paper, Indiana University, 2010.

[12] P. E. Kloeden and E. Platen, “Numerical Solution of Stochastic Differential Equations,” Applications of Mathematics, Vol. 23, 1992, in press.
doi:10.1007/978-3-662-12616-5

[13] D. Kennedy, “Stochastic Financial Models,” Financial Mathematics Series, Chapman & Hall/CRC, London, 2010.

[14] Y. Ait-Sahalia, “Testing Continuous-Time Models of the Spot Interest Rate,” Review of Financial Studies, Vol. 9, No. 2, 1996, pp. 385-426. doi:10.1093/rfs/9.2.385

[15] F. Klebaner, “Introduction to Stochastic Calculus with Applications,” Imperial College Press, London, 2005.
doi:10.1142/p386

[16] F. Black and M. S. Scholes, “The Pricing of Options and Corporate Liabilities,” Journal of Political Economy, Vol. 81, No. 3, 1973, pp. 637-654. doi:10.1086/260062

[17] J. C. Hull and A. D. White, “The Pricing of Options on Assets with Stochastic Volatilities,” Journal of Finance, Vol. 42, No. 2, 1987, pp. 281-300.
doi:10.1111/j.1540-6261.1987.tb02568.x

[18] P. Balduzzi, S. R. Das and S. Foresi, “The Central Tendency: A Second Factor in Bond Yields,” The Review of Economics and Statistics, Vol. 80, No. 1, 1998, pp. 62-72.
doi:10.1162/003465398557339

[19] D. McLeish, “Monte Carlo Simulation and Finance,” Wiley Finance, Wiley, Hoboken, 2005.