Quantum Heat Engines; Multiple-State 1D Box System

Affiliation(s)

1Laboratory of Theoretical Physics and Natural Philosophy, Department of Physics, ITS, Surabaya, Indonesia 2Physics Department, State University of Malang, Malang, Indonesia.

Laboratory of Theoretical Physics and Natural Philosophy, Department of Physics, ITS, Surabaya, Indonesia.

1Laboratory of Theoretical Physics and Natural Philosophy, Department of Physics, ITS, Surabaya, Indonesia 2Physics Department, State University of Malang, Malang, Indonesia.

Laboratory of Theoretical Physics and Natural Philosophy, Department of Physics, ITS, Surabaya, Indonesia.

ABSTRACT

We evaluate quantum Otto, Diesel and Brayton cycles employing
multiple-state 1D box system instead of ideal gas filled cylinder. The work and
heat are extracted using the change in the expectation of Hamiltonian of the
system which leads to the first law of thermodynamics to quantum system. The
first law makes available to redefine the force which is in fact not well
defined in a quantum mechanical system and then it is applied to define the
quantum version of thermodynamic processes, *i.e*.
isobaric, isovolume and adiabatic. As the results, the efficiency of quantum
Otto engine depends only on the compression ratio and will be higher than the
efficiency of quantum Diesel which can decrease by the widening of expansion
under isobaric process. The efficiency of quantum Brayton engine may reach
maximum on certain combination between the wide of box under isobaric expansion
and compression, under certain conditions. The amount of levels participated in
the quantum heat engine system will potentially reduce the performance of the
quantum heat cycles consisting isobaric process, but it can be resisted using
isobaric process controller.

Cite this paper

E. Latifah and A. Purwanto, "Quantum Heat Engines; Multiple-State 1D Box System,"*Journal of Modern Physics*, Vol. 4 No. 8, 2013, pp. 1091-1098. doi: 10.4236/jmp.2013.48146.

E. Latifah and A. Purwanto, "Quantum Heat Engines; Multiple-State 1D Box System,"

References

[1] T. D. Kieu, “Quantum Heat Engine, the Second Law and Maxwell’s Daemon,” arXiv:quant-ph/0311157v5.

[2] T. D. Kieu, Physical Review Letters, Vol. 93, 2004, Article ID: 140403

[3] H. T. Quan, Physical Review E, Vol. 79, 2009, Article ID: 041129. doi:10.1103/PhysRevE.79.041129

[4] H. E. D. Scovil and E. O. Schulz-DuBois, Physical Review Letters, Vol. 2, 1959, pp. 262-263. doi:10.1103/PhysRevLett.2.262

[5] H. T. Quan, Y. D. Wang, Y.-X. Liu, C. P. Sun and F. Nori, Physical Review Letter, Vol. 97, 2006, Article ID: 180402.

[6] C. M. Bender, D. C. Broody and B. K. Meisner, Journal of Physics, Vol. 33, 2000, p. 4427.

[7] E. Latifah and A. Purwanto, Journal of Modern Physics, Vol. 2, 2011, pp. 1366-1372. doi:10.4236/jmp.2011.211169

[8] H. T. Quan, Y.-X., Liu, C. P. Sun and F. Nori, Physical Review E, Vol. 76, No. 3, 2007, Article ID: 031105. doi:10.1103/PhysRevE.76.031105

[9] H. T. Quan, P. Zhang and C. P. Sun, Physical Review E, Vol. 72, 2005, Article ID: 056110.

[10] G. Mahler, Physics, Vol. 5, 2012. doi:10.1103/Physics.5.55

[11] N. Linden, S. Popescu and P Skrzypczyk, “The Smallest Possible Heat Engine,” 2010, arXiv:1010.6029v1 [quantph] 28.

[12] R. Dillenschneider and E. Lutz, “Improving Quantum Carnot Engine with Quantum Correlation,” 2008, arXiv: 0803.4067v1.

[13] M. O. Scully, Physical Review Letter, Vol. 88, 2002, Article ID: 050602.

[14] M. W. Zemansky and R. H. Dittman, “Heat and Thermodynamics,” 7 Edition, The McGraw-Hill Companies, Inc., Boston, 1997.

[15] C. Kittel and H. Kroemer, “Thermal Physics,” W. H. Freedman and Company, 1980.

[16] C. M. Bender, D. C. Brody and B. K. Meister, Proceedings of the Royal Society, Vol. 458, 2002, pp. 1519-1526. doi:10.1098/rspa.2001.0928

[17] P. Borowski, J. Gammer and G. Mahler, EPL (Europhysics Letters), Vol. 62, 2003, p. 629. doi:10.1209/epl/i2003-00420-8

[18] G. P. Baretta, “Quantum Thermodynamis Carnot and Otto-Like Cycles for Two-Level System,” 2008, arXiv:quantum-ph/070326v1.

[19] A. Purwanto and E. Latifah, Open Journal of Microphysics, Vol. 2, 2012, pp. 13-18, doi:10.4236/ojm.2012.22002

[20] W. O. De Galway and J. Naudts, “Quantum Cooling by Unitary Transformation,” 2011, arXiv:1112.1557v1 [mathph].

[21] D. V. Schroeder, “An Introduction to Thermal Physics,” Addison Wesley Longman, 2000.

[22] E. Latifah and A. Purwanto, “Multiple-State Quantum Otto Engine, 1D Box System,” AIP Conference Proceedings of the 4th International Conference on Mathematics and Natural Sciences (ICMNS), Bandung, 8-9 November 2012.

[23] E. Latifah and A. Purwanto, “Quantum Mechanical Ideal Diesel Engine,” Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA, Fakultas MIPA, Universitas Negeri Yogyakarta, 2012.

[24] L. D. Landau and E. M. Lifshitz, “Statistical Physics, Part 1,” 3rd Edition, Pergamon Press, 1980.

[1] T. D. Kieu, “Quantum Heat Engine, the Second Law and Maxwell’s Daemon,” arXiv:quant-ph/0311157v5.

[2] T. D. Kieu, Physical Review Letters, Vol. 93, 2004, Article ID: 140403

[3] H. T. Quan, Physical Review E, Vol. 79, 2009, Article ID: 041129. doi:10.1103/PhysRevE.79.041129

[4] H. E. D. Scovil and E. O. Schulz-DuBois, Physical Review Letters, Vol. 2, 1959, pp. 262-263. doi:10.1103/PhysRevLett.2.262

[5] H. T. Quan, Y. D. Wang, Y.-X. Liu, C. P. Sun and F. Nori, Physical Review Letter, Vol. 97, 2006, Article ID: 180402.

[6] C. M. Bender, D. C. Broody and B. K. Meisner, Journal of Physics, Vol. 33, 2000, p. 4427.

[7] E. Latifah and A. Purwanto, Journal of Modern Physics, Vol. 2, 2011, pp. 1366-1372. doi:10.4236/jmp.2011.211169

[8] H. T. Quan, Y.-X., Liu, C. P. Sun and F. Nori, Physical Review E, Vol. 76, No. 3, 2007, Article ID: 031105. doi:10.1103/PhysRevE.76.031105

[9] H. T. Quan, P. Zhang and C. P. Sun, Physical Review E, Vol. 72, 2005, Article ID: 056110.

[10] G. Mahler, Physics, Vol. 5, 2012. doi:10.1103/Physics.5.55

[11] N. Linden, S. Popescu and P Skrzypczyk, “The Smallest Possible Heat Engine,” 2010, arXiv:1010.6029v1 [quantph] 28.

[12] R. Dillenschneider and E. Lutz, “Improving Quantum Carnot Engine with Quantum Correlation,” 2008, arXiv: 0803.4067v1.

[13] M. O. Scully, Physical Review Letter, Vol. 88, 2002, Article ID: 050602.

[14] M. W. Zemansky and R. H. Dittman, “Heat and Thermodynamics,” 7 Edition, The McGraw-Hill Companies, Inc., Boston, 1997.

[15] C. Kittel and H. Kroemer, “Thermal Physics,” W. H. Freedman and Company, 1980.

[16] C. M. Bender, D. C. Brody and B. K. Meister, Proceedings of the Royal Society, Vol. 458, 2002, pp. 1519-1526. doi:10.1098/rspa.2001.0928

[17] P. Borowski, J. Gammer and G. Mahler, EPL (Europhysics Letters), Vol. 62, 2003, p. 629. doi:10.1209/epl/i2003-00420-8

[18] G. P. Baretta, “Quantum Thermodynamis Carnot and Otto-Like Cycles for Two-Level System,” 2008, arXiv:quantum-ph/070326v1.

[19] A. Purwanto and E. Latifah, Open Journal of Microphysics, Vol. 2, 2012, pp. 13-18, doi:10.4236/ojm.2012.22002

[20] W. O. De Galway and J. Naudts, “Quantum Cooling by Unitary Transformation,” 2011, arXiv:1112.1557v1 [mathph].

[21] D. V. Schroeder, “An Introduction to Thermal Physics,” Addison Wesley Longman, 2000.

[22] E. Latifah and A. Purwanto, “Multiple-State Quantum Otto Engine, 1D Box System,” AIP Conference Proceedings of the 4th International Conference on Mathematics and Natural Sciences (ICMNS), Bandung, 8-9 November 2012.

[23] E. Latifah and A. Purwanto, “Quantum Mechanical Ideal Diesel Engine,” Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA, Fakultas MIPA, Universitas Negeri Yogyakarta, 2012.

[24] L. D. Landau and E. M. Lifshitz, “Statistical Physics, Part 1,” 3rd Edition, Pergamon Press, 1980.