JMP  Vol.4 No.8 , August 2013
Modelling Bacterial Dynamics in Food Products: Role of Environmental Noise and Interspecific Competition
ABSTRACT

In this paper we review some results obtained within the context of the predictive microbiology, which is a specific field of the population dynamics. In particular we discuss three models, which exploit tools of statistical mechanics, for bacterial dynamics in food of animal origin. In the first model, the random fluctuating behaviour, experimentally measured, of the temperature is considered. In the second model stochastic differential equations are introduced to take into account the influence of physical and chemical variables, such as temperature, pH and activity water, subject to deterministic and random variations. The third model, which is an extended version of the second one, neglects the environmental fluctuations, and concentrates on the role of the interspecific bacterial interactions. The comparison between expected results and observed data indicates that the presence of noise sources and interspecific bacterial interactions improves the predictive features of the models analyzed.


Cite this paper
D. Valenti, A. Giuffrida, G. Ziino, F. Giarratana, B. Spagnolo and A. Panebianco, "Modelling Bacterial Dynamics in Food Products: Role of Environmental Noise and Interspecific Competition," Journal of Modern Physics, Vol. 4 No. 8, 2013, pp. 1059-1065. doi: 10.4236/jmp.2013.48142.
References
[1]   R. C. Whiting and R. L. Buchanan, Food Microbiology, Vol. 10, 1993, pp. 175-177. doi:10.1006/fmic.1993.1034

[2]   P. Dalgaard, P. Buch and S. Silberg, International Journal of Food Microbiology, Vol. 73, 2002, pp. 343-349. doi:10.1016/S0168-1605(01)00670-5

[3]   A. J. Lotka, Proceedings of the National Academy of Science of USA, Vol. 6, 1920, pp. 410-415. doi:10.1073/pnas.6.7.410

[4]   V. Volterra, Nature, Vol. 118, 1926, pp. 558-560. doi:10.1038/118558a0

[5]   E. J. Dens, K. M. Vereecken and J. F. Van Impe, Journal of Theoretical Biology, Vol. 201, 1999, pp. 159-170. doi:10.1006/jtbi.1999.1021

[6]   M. Powell, W. Schlosserb and E. Ebel, International Journal of Food Microbiology, Vol. 90, 2004, pp. 171-179. doi:10.1016/S0168-1605(03)00106-5

[7]   T. A. McMeekin, J. Olley, D. A. Ratkowsky and T. Ross, International Journal of Food Microbiology, Vol. 73, 2002, pp. 395-407. doi:10.1016/S0168-1605(01)00663-8

[8]   M. J. Nauta, International Journal of Food Microbiology, Vol. 57, 2000, pp. 9-18. doi:10.1016/S0168-1605(00)00225-7

[9]   J. Baranyi, Journal of Theoretical Biology, Vol. 192, 1998, pp. 403-408. doi:10.1006/jtbi.1998.0673

[10]   J. Baranyi and C. Pin, Journal of Theoretical Biology, Vol. 210, 2001, pp. 327-336. doi:10.1006/jtbi.2001.2312

[11]   I. A. M. Swinnen, K. Bernaerts, E. J. J. Dens, A. H. Geeraerd and J. F. Van Impe, International Journal of Food Microbiology, Vol. 94, No. 2, 2004, pp. 137-159. doi:10.1016/j.ijfoodmicro.2004.01.006

[12]   J. M. Ponciano, F. P. J. Vandecasteele, T. F. Hess, L. J. Forney, R. L. Crawford and P. Joyce, Applied Environmental Microbiology, Vol. 71, 2005, pp. 2355-2364. doi:10.1128/AEM.71.5.2355-2364.2005

[13]   R. L. Buchanan and S. A. Palumbo, Journal of Food Safety, Vol. 7, 1985, pp. 15-29. doi:10.1111/j.1745-4565.1985.tb00490.x

[14]   H. Daskalov, Food Control, Vol. 17, 2006, pp. 474-483. doi:10.1016/j.foodcont.2005.02.009

[15]   C. R. Fricker and S. Tompsen, International Journal of Food Microbiology, Vol. 9, 1989, pp. 17-23. doi:10.1016/0168-1605(89)90033-0

[16]   P. Gobat and T. Jemmi, International Journal of Food Microbiology, Vol. 20, 1993, pp. 117-120. doi:10.1016/0168-1605(93)90099-3

[17]   K. Krovacek, A. Faris, S. B. Badola, M. Prererz, T. Lindberg and I. Mansson, Food Microbiology, Vol. 9, 1992, pp. 29-36. doi:10.1016/0740-0020(92)80059-D

[18]   Y. Nishikawa and T. Kishi, Epidemiology and Infection, Vol. 101, 1988, pp. 213-223. doi:10.1017/S0950268800054121

[19]   J. Baranyi and T. A. Roberts, International Journal of Food Microbiology, Vol. 23, 1994, 277-294. doi:10.1016/0168-1605(94)90157-0

[20]   C. Pin, R. Velasco de Diego, S. George, G. D. Garca de Fernando and J. Baranyi, Applied Environmental Microbiology, Vol. 70, 2004, pp. 3925-3932. doi:10.1128/AEM.70.7.3925-3932.2004

[21]   A. Giuffrida, G. Ziino, D. Valenti, G. Donato and A. Panebianco, Archiv für Lebensmittelhygiene, Vol. 58, 2007, pp. 136-141.

[22]   A. Giuffrida, D. Valenti, G. Ziino, B. Spagnolo and A. Panebianco, European Food Research and Technology, Vol. 228, 2009, pp. 767-775. doi:10.1007/s00217-008-0988-6

[23]   A. Giuffrida, G. Ziino, F. Rago, F. Giarratana, A. Taviano and A. Panebianco, “Behaviour of Lysteria monocytogenes during the Seasoning of a Typical Sicilian Dried Salami,” Proceedings of INTRADFOOD 2005 (Innovation in Traditional Food), 25-28 October 2005, Valencia, pp. 537-540.

[24]   D. Valenti, A. Fiasconaro and B. Spagnolo, Acta Physica Polonica B, Vol. 35, 2004, pp. 1481-1489.

[25]   D. Valenti, L. Tranchina, M. Brai, A. Caruso, C. Cosentino and B. Spagnolo, Ecological Modelling, Vol. 213, 2008, pp. 449-462. doi:10.1016/j.ecolmodel.2008.01.023

[26]   A. Fiasconaro, D. Valenti and B. Spagnolo, Acta Physica Polonica B, Vol. 35, 2004, pp. 1491-1500.

[27]   M. Campanini, I. Pedrazzoni, S. Barbuti and P. Baldini, International Journal of Food Microbiology, Vol. 20, 1993, pp. 169-175. doi:10.1016/0168-1605(93)90109-T

[28]   M. Trüssel and T. Jemmi, Fleischwirtschaft, Vol. 69, 1989, pp. 1586-1592.

[29]   A. Giuffrida, D. Valenti, G. Ziino and A. Panebianco, Veterinary Research Communications, Vol. 33, 2009, S229-S232. doi:10.1007/s11259-009-9293-5

 
 
Top