The Missing Dark Energy of the Cosmos from Light Cone Topological Velocity and Scaling of the Planck Scale

Show more

References

[1] L. Sigalotti and A. Mejias, “The Golden Mean in Special Relativity,” Chaos, Solitons & Fractals, Vol. 30, No. 3, 2006, pp. 521-524. doi:10.1016/j.chaos.2006.03.005

[2] S. Hendi and M. Sharif Zadeh, “Special Relativity and the Golden Ratio,” Journal of Theoretical Physics, Vol. 1, 2012, pp. 37-45.

[3] L. Amendola and S. Tsujikawa, “Dark Energy: Theory and Observations,” Cambridge University Press, Cambridge, 2010.

[4] Nobel Foundation, “The Nobel Prize in Physics,” 2011. http://nobelprize.org.nobelprizes/physics/Laureates/2011/index.html

[5] B. Zwiebach, “A First Course in String Theory,” Cambridge University Press, Cambridge, 2004.
doi:10.1017/CBO9780511841682

[6] W. Rindler, “Relativity,” Oxford Science Publications, Oxford, 2004.

[7] L. B. Okun, “Energy and Mass in Relativity Theory,” World Scientific, Singapore, 2009.

[8] J. Mageuijo and L. Smolin, “Lorentz Invariance with an Invariant Energy Scale,” arXiv: hepth/0112090V2.

[9] G. Veneziano, “An Introduction to Dual Models of Strong Interactions and Their Physical Motivations,” Physical Reports, Vol. C9, 1974, p. 199.

[10] M. Green, J. Schwarz and E. Witten, “Superstring Theory,” Cambridge University Press, Cambridge, 1994.

[11] B. Bavnbek, G. Esposito and M. Lesch, “New Paths towards Quantum Gravity,” Springer, Berlin 2010.
doi:10.1007/978-3-642-11897-5

[12] M. S. El Naschie, “The Theory of Cantorian Spacetime and High Energy Particle Physics (An Informal Review),” Chaos, Solitons & Fractals, Vol. 41, No. 5, 2009, pp. 2635-2646. doi:10.1016/j.chaos.2008.09.059

[13] M. S. El Naschie, “A Review of E-Infinity and the Mass Spectrum of High Energy Particle Physics,” Chaos, Solitons & Fractals, Vol. 19, No. 1, 2004, pp. 209-236.
doi:10.1016/S0960-0779(03)00278-9

[14] L. Nottale, “Scale Relativity and Fractal Space-Time,” Imperial College Press, London, 2011.

[15] M. S. El Naschie, “Topological-Geometrical and Physical Interpretation of the Dark Energy of the Cosmos as a ‘Halo’ Energy of the Schr?dinger Quantum Wave,” Journal of Modern Physics, Vol. 4, 2013, pp. 591-596.
doi:10.4236/jmp.2013.45084

[16] L. Marek-Crnjac, M. S. El Naschie and J.-H. He, “Chaotic Fractals at the Root of Relativistic Quantum Physics and Cosmology,” International Journal of Modern Nonlinear Theory and Application, Vol. 2, 2013, pp. 78-88.
doi:10.4236/ijmnta.2013.21A010

[17] M. S. El Naschie, “A Resolution of Cosmic Dark Energy via a Quantum Entanglement Relativity Theory,” Journal of Quantitative Information Science, Vol. 3, 2013, pp. 23-26. doi:10.4236/jqis.2013.31006

[18] T. Hübsch, “Calabi-Yau Manifolds,” World Scientific, Singapore, 1992. doi:10.1142/1410

[19] J. Guckenheimer and P. Holmes, “Nonlinear Dynamical Systems and Bifurcation of Vector Fields,” Springer Verlag, New York, 1994.

[20] P. S. Wesson, “Five-Dimensional Physics,” World Scientific, Singapore, 2006.

[21] M. S. El Naschie, “A Fractal Menger Sponge Spacetime Proposal to Reconcile Measurements and Theoretical Predictions of Cosmic Dark Energy,” International Journal of Modern Nonlinear Theory and Application, Vol. 2, 2013, pp. 107-121. doi:10.4236/ijmnta.2013.22014

[22] M. S. El Naschie, “Dark Energy from Kaluza-Klein Spacetime and Noether’s Theorem via Lagrangian Multiplier Method,” Journal of Modern Physics, Vol. 4, 2013, pp. 757-760. doi:10.4236/jmp.2013.46103

[23] M.S. El Naschie, “Quantum Entanglement: Where Dark Energy and Negative Gravity plus Accelerated Expansion of the Universe Comes from,” Journal of Quantitative Information Science, Vol. 3, No. 2, 2013, pp. 57-77.
doi:10.4236/jqis.2013.32011

[24] M. S. El Naschie, “A Unified Newtonian-Relativistic Quantum Resolution of the Supposedly Missing Dark Energy of the Cosmos and the Constancy of the Speed of Light,” International Journal of Modern Nonlinear Theory and Application, Vol. 2, No. 1, 2013, pp. 43-54.
doi:10.4236/ijmnta.2013.21005

[25] J. Magueijo, “Faster than the Speed of Light,” Arrow Books, London, 2003.

[26] D. Gross, “Can We Scale the Planck Scale?” Physics Today, Vol. 42, No. 6, 1989, p. 9.

[27] A. Albrecht and C. Skordis, “Phenomenology of a Realistic Accelerating Universe Using only Planck scale Physics,” arXiv: astro-ph/9908085V2

[28] L. Biedenharn and L. Horwitz, “Quantum Theory and Exceptional Gauge Groups,” Proceedings of Second John Hopkins Workshop, California, 21 April 1978.

[29] M. S. El Naschie, “Dimensional Symmetry Breaking, Information and Fractal Gravity in Cantorian Space,” Biosystems, Vol. 46, No. 1-2, 1998, pp. 41-46.
doi:10.1016/S0303-2647(97)00079-8

[30] M. Crasmareanu and C. Hretcanu, “Golden Differential Geometry,” Chaos, Solitons & Fractals, Vol. 38, No. 5, 2008, pp. 1229-1238. doi:10.1016/j.chaos.2008.04.007

[31] M. S. El Naschie, “Fractal Gravity and Symmetry Breaking in Hierarchal Cantorian Space,” Chaos, Solitons & Fractals, Vol. 8, No. 11, 1997, pp. 1865-1872.
doi:10.1016/S0960-0779(97)00039-8

[32] E. Witten, “Topological Quantum Field,” Communications in Mathematical Physics, Vol. 117, No. 3, 1988, pp. 353-386. doi:10.1007/BF01223371

[33] J. Mageuijo and J. Moffat, “Comments on “Note on Varying Speed of Light Theories,” arXiv:0705.4507V1[gr-9c]

[34] J. Maldacena and L. Susskind, “Cool Horizons for Entangled Black Holes,” 11 July 2013.
arXiv: 1306.0533V2[hep-th]