AS  Vol.4 No.8 , August 2013
Sprouts seasonal elongation of two olive cultivars in a high-density orchard

The new high-density cropping systems (>1200 trees ha-1) represent a very interesting proposal for olive orchard profitability. It is crucial to know the morphology and the dynamics of sprout elongation of a cultivar in order to fully assess its suitability for a high-density olive orchard. For this reason we planned a research on two cultivars, Coratina and Arbequina, in a high-density orchard. The apical sprouts elongation of Arbequina early stopped at fruit set without a further step, while Coratina showed a little growth flux after pit hardening. Similar trends showed the lateral proleptic sprouts. Only the sylleptic sprouts of both cultivars had a second period of activity. In all cases, the sprouts elongation finished at the end of summer, when oil accumulation started. Coratina showed higher apical shoot growth and internodes mean length than Arbequina. On the contrary, Coratina showed lower lateral proleptic shoot growth and nodes number than Arbequina, but the same internodes mean length. No significant differences were observed between cultivars for growth, nodes number and internodes mean length of sylleptic shoots. The differences observed between the two cultivars could be explained considering their different vigour. The introduction of this innovative cropping system is allowed to register a considerable reduction of production costs. The result is a considerable increase in the economic performance of the olive grove and a consequent reduction in the unit cost for kg of oil. These data are very useful for varietal choice and field management in high-density orchards and then for new olive breeding programs.

Cite this paper: Strippoli, G. , Vivaldi, G. , Camposeo, S. and Contò, F. (2013) Sprouts seasonal elongation of two olive cultivars in a high-density orchard. Agricultural Sciences, 4, 376-381. doi: 10.4236/as.2013.48054.

[1]   [1] Camposeo, S., Ferrara, G., Palasciano, M. and Godini, A. (2008) Varietal behaviour according to the superintensive olive culture training system. Acta Horticulturae, 791, 171-274.

[2]   Godini, A., Vivaldi, G.A. and Camposeo, S. (2011) Olive cultivars field-tested in super high-density system in southern Italy. California Agriculture, 65, 39-40. doi:10.3733/ca.v065n01p39

[3]   Contò, F. (2004) Optimizing the use of water and environmental resources fora model of sustainable development of the “Basso Tavoliere” Area. Edizione L’Aquilone, Potenza.

[4]   Camposeo, S. and Godini, A. (2010) Preliminary observations the performance of 13 varieties according to the super high density oliveculture training system in Apulia (southern Italy). Advanced Horticultural Science, 24, 16-20.

[5]   Connor, D.J. and Gómez-del-Campo, M. (2013) Simulation of oil productivity and quality of N-S oriented olive hedgerow orchards in response to structure and interception of radiation. Scientia Horticulturae, 150, 90-99. doi:10.1016/j.scienta.2012.09.032

[6]   Camposeo, S. and Vivaldi, G.A. (2011) Short-term effects of de-oiled olive pomace mulching application on a young super high-density olive orchard. Scientia Horticulturae, 129, 613-621. doi:10.1016/j.scienta.2011.04.034

[7]   Gómez-del-Campo, M. (2013) Summer deficit-irrigation strategies in a hedgerow olive orchard cv. “Arbequina”: Effect on fruit characteristics and yield. Irrigation Science, 31, 259-269. doi:10.1007/s00271-011-0299-8

[8]   Vivaldi, G.A., Strippoli, G. and Camposeo, S. (2013) Ecophysiological response to irrigation of two olive cultivars grown in a high-density orchard. Agricultural Sciences (in press).

[9]   Camposeo, S., Vivaldi, G.A. and Gattullo, C.E. (2013) Ripening indices and harvesting times of different olive cultivars for continuous harvest. Scientia Horticulturae, 151, 1-10. doi:10.1016/j.scienta.2012.12.019

[10]   Tombesi, A., Proietti, P., Iacovelli, G., Tombesi, S. and Farinelli, D. (2011) Vegetative and productive behaviour of four olive Italian cultivars and “Arbequina” according to super intensive olive training system in central Italy. Acta Horticulturae, 924, 211-218.

[11]   Goethe, J.W. (1790) Versuch die metamorphose der pflanzen zu erklaren. Modern Edition, La Metamorphose des Plantes (1975), Triades, Paris.

[12]   Goebel, K. (1900) Organography of plants. Part I. General organography (translated by IB Balfour). The Clarendon Press, Oxford.

[13]   Oldeman, R.A.A. (1974) L’architecture de la foret guyanaise. O.R.S.T.O.M., Paris.

[14]   Hallé, F. and Oldeman, R.A.A. (1970) Essai sur l’architecture et la dynamique de croissance des arbres tropicaux. Masson, Paris.

[15]   Edelin, C., (1981) Quelques aspects de l’architecture vegetative des Conifères. Bulletin de la Sociètè Botanique de France, Lettres Botanique de France. Lettres Botaniques, 128, 177-188.

[16]   Nicolini, E. (1998) Architecture et gradients morphogénétiques chez de jeunes hêtres (Fagus sylvatica L. Fagaceae) en milieu forestier. Canadian Journal of Botany, 76, 1232-1244. doi:10.1139/b98-053

[17]   Lauri, P.E. and Térouanne, E. (1999) Effect of inflorescence removal on the fruit set of the remaining inflorescences and development of the laterals on one year old apple (Malus domestica Borkh) branches. Journal Horticultural Science Biotechnology, 74, 110-117.

[18]   Costes, E., Fournier D. and Salles J.C. (2000) Changes in primary and secondary growth as influenced by crop load in “Fantasme” apricot trees. Journal Horticultural Science Biotechnology, 75, 510-519.

[19]   Barman, M.E. and DeJong, T.M. (2003) Seasonal patterns of vegetative growth and competition with reproductive sink in peach. Journal Horticultural Science Biotechnology, 78, 303-309.

[20]   Hallé, F., Oldeman, R.A.A. and Tomlinson, P.B. (1978) Tropical trees and forests. Springer-Verlag, Berlin. doi:10.1007/978-3-642-81190-6

[21]   Barthélémy, D., Caraglio, Y. and Costes, E. (1997) Architecture, gradients morphogénétiques et age physiologique chez les végétaux. In: J. Bouchon, P. de Reffye and D. Barthèlèmy, Eds., Modelisation et simulation de l’architecture des végétaux. Sciences Update. Editions INRA, Paris, 89-136.

[22]   Aiachi-Mezghani, M., Sahli, A., Labidi, F, Meddeb, K., Jebari, A. and Ben El Hadj, S. (2008) Analysis in primary and secondary growth and modeling growth dynamics of olive shoots (Olea europea L.). Journal Horticultural Science Biotechnology, 83, 411-418. doi:10.1051/fruits:2006048

[23]   Masmoudi-Charfi, C. and Ben Mechlia, N. (2008) Changes in olive tree height growth during the first years of cultivation. Advances Horticultural Science, 22, 8-12.

[24]   Moutier, N., Garcia, G. and Lauri, P.E. (2004) Shoot architecture of the olive tree: Effect of cultivar on the number and distribution of vegetative and reproductive organs on branches. Acta Horticulturae, 636, 689-694.

[25]   Camposeo, S., Ferrara, G., Palasciano, M., Godini, A. (2012) About the biological behaviour of cv. Coratina. Acta Horticulturae, 949, 129-133.

[26]   Lavee, S. (1997) L’olivier, 61-110. In: COI, Encyclopédie mondiale de l’Olivier. Conseil Oléicole International, Madrid, Barcelona, 479.

[27]   Monselise, S. and Goldschmidt, E.E. (1982) Alternate bearing in fruit trees. Horticultural Review, 4, 128-173.

[28]   Castillo-Llanque, F.J. and Rapoport, H.F. (2011) Relationship between reproductive behavior and new shoot development in 5-year-old branches of olive trees (Olea europaea L.). Trees, 25, 823-832.

[29]   Lüttge, U., Kluge, M. and Bauer, G. (1992) Botanique. Traité fondamental. 3rd Edition, Edition Technique et Documentation, Paris, 574.

[30]   Contò, F. (2006) Economics and organization of agrofood chains. The chain of high quality oil olive. Franco Angeli Editore, Milano.