JDAIP  Vol.1 No.3 , August 2013
Application of Model-Based Data Transmission Techniques to Gravitational Model Data
Abstract: The transmission of scientific data over long distances is required to enable interplanetary science expeditions. Current approaches include transmitting all collected data or transmitting low resolution data to enable ground controller review and selection of data for transmission. Model-based data transmission (MBDT) seeks to increase the amount of knowledge conveyed per unit of data transmitted by comparing high-resolution data collected in situ to a pre-existing (or potentially co-transmitted) model. This paper describes the application of MBDT to gravitational data and characterizes its utility and performance. This is performed by applying the MBDT technique to a selection of gravitational data previously collected for the Earth and comparing the transmission requirements to the level required for raw data transmis-sion and non-application-aware compression. Levels of transmission reduction up to 31.8% (without the use maximum-error-thresholding) and up to 97.17% (with the use of maximum-error-thresholding) resulted. These levels significantly exceed what is possible with non-application-aware compression.
Cite this paper: J. Straub, "Application of Model-Based Data Transmission Techniques to Gravitational Model Data," Journal of Data Analysis and Information Processing, Vol. 1 No. 3, 2013, pp. 46-57. doi: 10.4236/jdaip.2013.13007.

[1]   J. R. Wertz, D. F. Everett and J. J. Puschell, “Space Mission Engineering: The New SMAD,” 1st Edition, Microcosm Press, Hawthorne, 2011.

[2]   P. Fortescue, G. Swinerd and J. Stark, “Spacecraft Systems Engineering,” 4th Edition, John Wiley & Sons, Inc., Hoboken, 2011. doi:10.1002/9781119971009

[3]   W. J. Larson and J. R. Wertz, “Space Mission Analysis and Design,” 3rd Edition, Microcosm Press, Hawthorne, 1999.

[4]   J. Schou, P. H. Scherrer, R. I. Bush, R. Wachter, S. Couvidat, M. C. Rabello-Soares, R. S. Bogart, J. T. Hoeksema, Y. Liu, T. L. Duvall, D. J. Akin, B. A. Allard, J. W. Miles, R. Rairden, R. A. Shine, T. D. Tarbell, A. M. Title, C. J. Wolfson, D. F. Elmore, A. A. Norton and S. Tomczyk, “Design and Ground Calibration of the Helioseismic and Magnetic Imager (HMI) Instrument on the Solar Dynamics Observatory (SDO),” Solar Physics, Vol. 275, No. 1-2, 2012, pp. 229-259. doi:10.1007/s11207-011-9842-2

[5]   L. N. Faria, L. M. G. Fonseca and M. H. M. Costa, “Performance Evaluation of Data Compression Systems Applied to Satellite Imagery,” Journal of Electrical and Computer Engineering, Vol. 2012, 2012, Article ID: 471857.

[6]   D. Barret, L. Ravera, P. Bodin, C. Amoros, M. Boutelier, J. Glorian, O. Godet, G. Orttner, K. Lacombe, R. Pons, D. Rambaud, P. Ramon, S. Ramchoun, J. Biffi, M. Belasic, R. Clédassou, D. Faye, B. Pouilloux, C. Motch, L. Michel, P. H. Lechner, A. Niculae, L. W. Strueder, G. Distratis, E. Kendziorra, A. Santangelo, C. Tenzer, H. Wende, J. Wilms, I. Kreykenbohm, C. Schmid, S. Paltani, F. Cadoux, C. Fiorini, L. Bombelli, M. Méndez and S. Mereghetti, “The High Time Resolution Spectrometer (HTRS) Aboard the International X-Ray Observatory (IXO),” Proceedings of the SPIE 2010, Vol. 7732, 2010.

[7]   K. M. Cheung, M. Belongie and K. Tong, “End-to-End System Consideration of the Galileo Image Compression System,” TDA Progress Report 42-126, 1996.

[8]   J. Straub, “Increasing Interplanetary CubeSat Mission Science Return with Model Based Transmission Reduction,” 1st Annual Interplanetary CubeSat Workshop, Boston, 29-30 May 2012.

[9]   J. Straub, “Reducing Link Budget Requirements with Model-Based Transmission Reduction Techniques,” Proceedings of the 26th Annual AIAA/USU Conference on Small Satellites, Logan, 13-16 August 2012, 18 Pages.

[10]   J. Straub, “Integrating Model-Based Transmission Reduction into a Multi-Tier Architecture,” Proceedings of the 2013 IEEE Aerospace Conference, Big Sky, 2-9 March 2013, pp. 1-7.

[11]   J. Straub, “Model Based Data Transmission: Analysis of Link Budget Requirement Reduction,” Communications and Network, Vol. 4, No. 4, 2012, pp. 278-287.

[12]   G. R. Keller, “Using and Understanding Gravity Data,” 2012.

[13]   G. Niu, Z. Yang, R. E. Dickinson, L. E. Gulden and H. Su, “Development of a Simple Groundwater Model for Use in Climate Models and Evaluation with Gravity Recovery and Climate Experiment Data,” Journal of Geophysical Research, Vol. 112, No. D7, 2007, Article ID: D07103. doi:10.1029/2006JD007522

[14]   B. D. Tapley, S. Bettadpur, J. C. Ries, P. F. Thompson and M. M. Watkins, “Grace Measurements of Mass Variability in the Earth System,” Science, Vol. 305, No. 5683, 2004, pp. 503-505. doi:10.1126/science.1099192

[15]   S. Y. Johnson, S. V. Dadisman, J. R. Childs and W. D. Stanley, “Active Tectonics of the Seattle Fault and Central Puget Sound, Washington—Implications for Earthquake Hazards,” Geological Society of America Bulletin, Vol. 111, No. 7, 1999, pp. 1042-1053. doi:10.1130/0016-7606(1999)111<1042:ATOTSF>2.3.CO;2

[16]   J. Kauahikaua, T. Hildenbrand and M. Webring, “Deep Magmatic Structures of Hawaiian Volcanoes, Imaged by Three-Dimensional Gravity Models,” Geology, Vol. 28, No. 10, 2000, pp. 883-886. doi:10.1130/0091-7613(2000)28<883:DMSOHV>2.0.CO;2

[17]   J. Straub and R. A. Fevig, “Earth Impactors: Threat Analysis and Multistage Intervention Mission Architecture,” Proceedings of SPIE Volume 8385: Sensors and Systems for Space Applications V, SPIE 2012 Defense, Security + Sensing, Baltimore, 7 May 2012.

[18]   J. P. McVey and N. Melamed, “Survey of Potentially Hazardous Object Threat Negation Campaign Options,” Acta Astronautica, 2012, In Press.

[19]   L. Iess, N. J. Rappaport, R. A. Jacobson, P. Racioppa, D. J. Stevenson, P. Tortora, J. W. Armstrong and S. W. Asmar, “Gravity Field, Shape, and Moment of Inertia of Titan,” Science, Vol. 327, No. 5971, 2010, pp. 1367-1369. doi:10.1126/science.1182583

[20]   H. A. Zebker, B. Stiles, S. Hensley, R. Lorenz, R. L. Kirk and J. Lunine, “Size and Shape of Saturn’s Moon Titan,” Science, Vol. 324, No. 5929, 2009, pp. 921-923. doi:10.1126/science.1168905

[21]   D. E. Smith and M. T. Zuber, “Neumann, G. A. Seasonal Variations of Snow Depth on Mars,” Science, Vol. 294, No. 5549, 2001, pp. 2141-2146. doi:10.1126/science.1066556

[22]   W. M. Folkner, C. F. Woder, D. N. Yuan, E. M. Standish and R. A. Preston, “Interior Structure and Seasonal Mass Redistribution of Mars from Radio Tracking of Mars Pathfinder,” Science, Vol. 278, No. 5344, 1997, pp. 1749- 1751. doi:10.1126/science.278.5344.1749

[23]   M. T. Zuber, S. C. Solomon, R. J. Phillips, D. E. Smith, G. L. Tyler, O. Aharonson, G. Balmino, W. B. Banerdt, J. W. Head, C. L. Johnson, F. G. Lemoine, P. J. McGovern, G. A. Neumann, D. D. Rowlands and S. Zhong, “Internal Structure and Early Thermal Evolution of Mars from Mars Global Surveyor Topography and Gravity,” Science, Vol. 287, No. 5459, 2000, pp. 1788-1793. doi:10.1126/science.287.5459.1788

[24]   N. K. Palvis, S. A. Holmes, S. C. Kenyon and J. K. Factor, “An Earth Gravitational Model to Degree 2160: EGM2008,” Proceedings of the 2008 General Assembly of the European Geosciences Union, Vienna, 13-18 April 2008, 37 Pages.

[25]   “Description of Files Related to Using the EGM2008 Global Gravitational Model to Compute Geoid Undulations with Respect to WGS 84,” 2012.

[26]   GRAIL, “Mission Overview,” 2012.

[27]   H. Zimmermann, “OSI Reference Model—The ISO Model of Architecture for Open Systems Interconnection,” IEEE Transactions on Communications, Vol. 28, No. 4, 1980, pp. 425-432. doi:10.1109/TCOM.1980.1094702

[28]   Space Data Link Protocol, 2012.

[29]   Space Packet Protocol.

[30]   DEFLATE Compressed Data Format Specification Version 1.3.