[1] Kolpin, D.W., et al. (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams: A national reconnaissance. Environmental Science & Technology, 36, 1202-1211. doi:10.1021/es020136s
[2] Osterberg, D. and Wallinga, D. (2004) Addressing externalities from swine production to reduce public health and environmental impacts. American Journal of Public Health, 94, 1703-1708. doi:10.2105/AJPH.94.10.1703
[3] US Food and Drug Administration (2010) 21 CFR Part 558.530. Food and drugs: new animal drugs for use in animal feeds. Electronic code of federal regulations. http://www.gpo.gov/fdsys/pkg/CFR-2010-title21-vol6/xml/CFR-2010-title21-vol6-part558.xml#seqnum558.530
[4] Calvert, C.C. (1975) Arsenicals in animal feeds and wastes. In: Woolson, E.A. Ed., Arsenical Pesticides, American Chemical Society, Washington DC, 70-79. doi:10.1021/bk-1975-0007.ch005
[5] Garbarino, J.R., Bednar, A.J., Rutherford, D.W., Beyer, R.S. and Wershaw, R.L. (2003) Environmental fate of roxarsone in poultry litter. I. Degradation of roxarsone during composting. Environmental Science & Technology, 37, 1509-1514. doi:10.1021/es026219q
[6] Jackson, B.P. and Bertsch, P.M. (2001) Determination of arsenic speciation in poultry wastes by IC-ICP-MS. Environmental Science & Technology, 35, 4868-4873. doi:10.1021/es0107172
[7] Rutherford, D.W., et al. (2003) Environmental fate of roxarsone in poultry litter. Part II. Mobility of arsenic in soils amended with poultry litter. Environmental Science & Technology, 37, 1515-1520. doi:10.1021/es026222+
[8] Hileman, B. (2007) Arsenic in chicken production. Chemical and Engineering News, 85, 34-35. doi:10.1021/cen-v085n015.p034
[9] Cody, C. (2003) Siloam springs: Farmers told to stop spreading litter. Arkansas Democrat Gazette, 1.
[10] Joyner, C. (2011) Feds warn of potential water contamination. The Atlanta Journal-Constitution, 14, SA1-SA12.
[11] Nachman, K.E., Graham, J.P., Price, L.B. and Silbergeld, E.K. (2005) Arsenic: A roadblock to potential animal waste management solutions. Environ Health Perspectives, 113, 1123-1124. doi:10.1289/ehp.7834
[12] Moody, J.P. and Williams, R.T. (1964) The metabolism of 4-hydroxynitrophenylarsonic acid in hens. Food and Cosmetics Toxicology, 2, 707-710. doi:10.1016/S0015-6264(64)80422-3
[13] Cortinas, I., et al. (2006) Anaerobic biotransformation of roxarsone and related N-substituted phenylarsonic acids. Environmental Science & Technology, 40, 2951-2957. doi:10.1021/es051981o
[14] Stoltz, J.F., et al. (2007) Biotransformation of 3-nitro-4-hydroxybenzene arsonic acid and release of inorganic arsenic by Clostridium species. Environmental Science & Technology, 41, 818-823. doi:10.1021/es061802i
[15] Sabbioni, G. and Richter, E. (1999) Aromatic amines, nitroarenes, and heterocyclic aromatic amines. In: Marquardt, H., Schafer, S.G., McClellan, R.O. and Welsch, F. Eds., Toxicology, Academic Press, San Diego, 730-736. doi:10.1016/B978-012473270-4/50089-4
[16] Wershaw, R.L., et al. (2003) Mass spectrometric identification of an azobenzene derivative produced by smectitecatalyzed conversion of 3-amino-4-hydroxy-phenyl-arsonic acid to an azobenzene derivative. Talanta, 59, 1219-1226. doi:10.1016/S0039-9140(03)00032-8
[17] Bayse, G.S., Kirlin, W.G. and Kirkland, P.D. (2004) Effects of roxarsone and its metabolites on caco-2 cell proliferation. Toxicologist, 82, 1447.
[18] Bayse, G.S., Jinadu, L.A., Shaw, K.A. and Wiley, K.L. (2000) The N-acetylation of arsanilic acid in vitro by mammalian enzymes. Drug Metabolism and Disposition, 28, 487-492.
[19] O’Neil, M.J. (2006) The Merck Index: An Encyclopedia of Chemicals, Drugs and Biological. Merck and Company, Whitehouse Station.
[20] Harris, G. and Grady, D. (2011) Pfizer suspends sales of chicken drug with arsenic. New York Times, SB, 2.
[21] Ashby, J. and Tennant, R.W. (1991) Definitive relationships among chemical structure, carcinogenicity and mutagenicity for 301 chemicals tested by the US NTP. Mutation Research, 257, 229-306. doi:10.1016/0165-1110(91)90003-E
[22] Parkinson, A. (2001) Biotransformation of xenobiotics. In: Klaassen, C.D. Ed., Casarett and Doull’s Toxicology, McGraw Hill, New York, 133-224.
[23] Bayse, G.S., Jackson, K.M., Kirlin, W.G. and Rollins-Hairston, A. (2006) Proliferation of human caco-2 cells mediated by N-acetylation and oxidation reactions of 3-amino-4-hydroxybenzenearsonate. Toxicologist, 90, 674.
[24] Bayse, G.S., et al. (2007) Permeation of benzenearsonates provides sufficient concentrations to cause Alterations in caco-2 cell proliferation. Toxicologist, 96, 1174.
[25] Robinson, D.K., Hammonds-Odie, L.P., Jackson, K.M., Kirlin, W.G. and Bayse, G.S. (2010) Caco-2 cell permeation of five benzenearsonates increases likelihood of hepatic biotransformations. Toxicologist, 114, 1101.
[26] Hammonds-Odie, L.P., Bayse, G.S., Jackson, K.M. and Robinson, D.K. (2006) Evaluation of benezenearsonate permeation in caco-2 cells. http://www.fasebj.org/cgi/content/meeting_abstract/20/5/LB111-b?sid=cf22ab74-c1a9-4417-b169-133f4b8aa2ce
[27] Artursson, P. (1990) Epithelial transport of drugs in cell culture. I: A model for studying the passive diffusion of drugs over intestinal absorptive (caco-2) cells. Journal of Pharmaceutical Sciences, 79, 476-482. doi:10.1002/jps.2600790604
[28] Hidalgo, I.J., Raub, T.J. and Borchardt, R.T. (1989) Characterization of the human colon carcinoma cell line (ca-co-2) as a model system for intestinal epithelial permeability. Gastroenterology, 96, 736-749.
[29] Prueksaritanont, T., Gorham, L.M., Hochman, J.H., Tran, L.O. and Vyas, K.P. (1996) Comparative studies of drugmetabolizing enzymes in dog, monkey, and human small intestines, and in caco-2 cells. Drug Metabolism and Disposition, 24, 634-642.
[30] Hayes, J.R. and Campbell, T.C. (1986) Food additives and contaminants. In: Klaassen, C.D., Amdur, M.O. and Doull, J. Eds., Casarett and Doull’s Toxicology, Macmillan, New York, 771-800.
[31] Abdo, K.M., et al. (1989) Toxic responses in F344 rats and B6CF1 mice given roxarsone in their diets for up to 13 weeks. Toxicology Letters, 45, 5-66. doi:10.1016/0378-4274(89)90159-8
[32] Ashby, J. and Paton, D. (1993) The influence of chemical structure on the extent and sites of carcinogenesis for 522 rodent carcinogens and 55 different human carcinogen exposures. Mutation Research, 286, 3-74. doi:10.1016/0027-5107(93)90003-X
[33] US Environmental Protection Agency (2011) Region 4 should strengthen oversight of Georgia’s concentrated animal feeding operation program. http://www.epa.gov/oig/reports/2011/20110623-11-P-0274.pdf
[34] Thompson, C.M., Haws, L.C., Harris, M.A., Gatto, N.M. and Proctor, D.M. (2011) Application of the US EPA mode of action framework for purposes of guiding future research: A case study involving the oral carcinogenicity of hexavalent chromium. Toxicological Sciences, 119, 20-40. doi:10.1093/toxsci/kfq320
[35] Doerge, D.R., Churchwell, M.I., Marques, M.M. and Beland, F.A. (1999) Quantitative analysis of 4-aminobiphenyl-C8-deoxyguanosyl DNA adducts produced in vitro using HPLC-ES-MS. Carcinogenesis, 20, 1055-1061. doi:10.1093/carcin/20.6.1055
[36] Zhang, T., Cao, E. and Qin, J. (2002) Opposite biological effects of arsenic trioxide and arsacetin involve a different regulation of signaling in human gastric cancer MGC-803 cells. Pharmacology, 64, 160-168. doi:10.1159/000056166
[37] Park, W.H., et al. (2000) Arsenic trioxide-mediated growth inhibition in MC/CAR myeloma cells via cell cycle arrest in association with induction of cyclin-dependent kinase inhibitor, p21, and apoptosis. Cancer Research, 60, 3065-3071.
[38] Vogt, B.L. and Rossman, T.G. (2001) Effects of arsenite on p53, p21 and cyclin D expression in normal human fibroblasts—A possible mechanism for arsenite’s comutagenicity. Mutation Research, 478, 159-168. doi:10.1016/S0027-5107(01)00137-3
[39] Barr, F.D., Krohmer, L.J., Hamilton, J.W. and Sheldon, L.A. (2009) Disruption of histone modification and CARM1 recruitment by arsenic represses transcription at glucocorticoid receptor-regulated promoters. PLoS ONE, 4, e6766. doi:10.1371/journal.pone.0006766
[40] Davey, J.C., et al. (2008) Arsenic as an endocrine disruptor: Arsenic disrupts retinoic acid receptor-and thyroid hormone receptor-mediated gene regulation and thyroid hormone-mediated amphibian tail metamorphosis. Environmental Health Perspectives, 116, 165-172.
[41] Kozul, C.D., et al. (2009) Chronic exposure to arsenic in the drinking water alters the expression of immune response genes in mouse lung. Environmental Health Perspectives, 117, 1108-1115. doi:10.1289/ehp.0800199
[42] Meharg, A.A. and Raab, A. (2010). Getting to the bottom of arsenic standards and guidelines. Environmental Science & Technology, 44, 4395-4399. doi:10.1021/es9034304
[43] Tapio, S. and Grosche, B. (2006) Arsenic in the aetiology of cancer. Mutation Research, 612, 215-246. doi:10.1016/j.mrrev.2006.02.001
[44] Kozul-Horvath, C.D., Zandbergen, F., Jackson, B.P., Enelow, R.I. and Hamilton, J.W. (2012) Effects of lowdose drinking water arsenic on mouse fetal and postnatal growth and development. PLoS ONE, 7, e38249. doi:10.1371/journal.pone.0038249
[45] Price, L.B., et al. (2007) Elevated risk of carrying gentamicin-resistant Escherichia coli among US poultry workers. Environmental Health Perspectives, 115, 1738-1742. doi:10.1289/ehp.10191
[46] Sapkota, A.R., Price, L.B. and Silbergeld, E.K. (2006) Arsenic resistance in Campylobacter spp. isolated from retail poultry products. Applied and Environmental Microbiology, 72, 3069-3071. doi:10.1128/AEM.72.4.3069-3071.2006
[47] Marshall, B.M. and Levy, S.B. (2011) Food animals and antimicrobials: Impacts on human health. Clinical Microbiology Reviews, 2, 718-733. doi:10.1128/CMR.00002-11
[48] US Food and Drug Administration (2012) 21 CFR part 558 subpart B-specific new animal drugs for use in animal feeds. Electronic Code of Federal Regulations. http://www.gpo.gov/fdsys/pkg/CFR-2012-title21-vol6/pdf/CFR-2012-title21-vol6-sec558-530.pdf