NS  Vol.5 No.8 , August 2013
Bisphosphonates and adipogenesis: Evidence for alendronate inhibition of adipocyte differentiation in 3T3-L1 preadipocytes through a vitamin D receptor mediated effect
Abstract: Background: Adipocyte and osteoblast derive from the same mesenchimal progenitor. Age-related decrease in bone mass is accompanied by an increase in marrow adipose tissue. Vitamin D3 (VD3) inhibits adipogenesis in 3T3-L1 preadipocytes. Recently it has been demonstrated that alendronate (ALN) inhibits adipogenesis while promoting osteoblast differentiation of mesenchimal stem cells. Aim of the Study: To evaluate the role of ALN on adipocyte differentiation in vitro and the potential synergic role of VD3 co-treatment. Procedures: Murine 3T3-L1 and 3T3-F442A preadipocytes were routinely differentiated in presence of ALN and VD3 10-9 - 10-7 M for 7 days and then stained with Oil Red O. The effect of these treatments on mRNA expression of the main molecular markers of adipocyte differentiation (PPARγ and C/EBPα) and VD Receptor (VDR) were analyzed through RT-PCR. Results: Both ALN and VD3 showed a marked anti-adipogenic effect on 3T3-L1 cells. Co-incubation of ALN 10-8 M and VD3 10-9 M displayed no synergic effect on inhibition of adipogenesis. PPARγ mRNA expression was significantly reduced by ALN and VD3. mRNA expression of C/EBPα was reduced only by VD3 treatment. An increase in VDR mRNA expression of 3T3-L1 cells was observed with both ALN and VD3. On the contrary, 3T3-F442A cells, which are in a more advanced adipogenic differentiation stage compared to 3T3-L1, did not express detectable levels of VDR. Interestingly, adipose differentiation of 3T3-F442A was not affected by ALN nor VD3. These results suggest that VDR may represent the molecular target of the anti-adipogenic effect of ALN. Conclusion: VDR plays a critical role in mediating the anti-adipogenic effect of ALN. Further studies to clarify this mechanism are warranted.
Cite this paper: Mammi, C. , Calanchini, M. , Antelmi, A. , Feraco, A. , Gnessi, L. , Falcone, S. , Quintarelli, F. , Rosano, G. , Fabbri, A. and Caprio, M. (2013) Bisphosphonates and adipogenesis: Evidence for alendronate inhibition of adipocyte differentiation in 3T3-L1 preadipocytes through a vitamin D receptor mediated effect. Natural Science, 5, 955-962. doi: 10.4236/ns.2013.58116.

[1]   Wells, G. A., Cranney, A., Peterson, J., Boucher, M., Shea, B., Robinson, V., Coyle, D. and Tugwell, P. (2008) Alen dronate for the primary and secondary prevention of os teoporotic fractures in postmenopausal women. Cochrane database of Systematic Reviews, CD001155.

[2]   Duque, G. and Rivas, D. (2007) Alendronate has an ana bolic effect on bone through the differentiation of mes enchymal stem cells. Journal of Bone and Mineral Re search, 22, 1603-1611. doi:10.1359/jbmr.070701

[3]   Nuttall, M.E. and Gimble, J.M. (2000) Is there a thera peutic opportunity to either prevent or treat osteopenic disorders by inhibiting marrow adipogenesis? Bone, 27, 177-184. doi:10.1016/S8756-3282(00)00317-3

[4]   Nuttall, M.E. and Gimble, J.M. (2004) Controlling the balance between osteoblastogenesis and adipogenesis and the consequent therapeutic implications. Current Opinion in Pharmacology, 4, 290-294. doi:10.1016/j.coph.2004.03.002

[5]   Sambrook, P. and Cooper, C. (2006) Osteoporosis. Lancet, 367, 2010-2018. doi:10.1016/S0140-6736(06)68891-0

[6]   Melo, M., Qiu, F., Sykora, K., Juurlink, D., Laupacis, A. and Mamdani, M. (2006) Persistence with bisphospho nate therapy in older people. Journal of the American Geriatrics Society, 54, 1015-1016. doi:10.1111/j.1532-5415.2006.00758.x

[7]   Still, K., Phipps, R.J. and Scutt, A. (2003) Effects of risedronate, alendronate, and etidronate on the viability and activity of rat bone marrow stromal cells in vitro. Calcified Tissue International, 72, 143-150. doi:10.1007/s00223-001-2066-y

[8]   Gimble, J.M., Zvonic, S., Floyd, Z.E., Kassem, M. and Nuttall, M.E. (2006) Playing with bone and fat. Journal of Cellular Biochemistry, 98, 251-266. doi:10.1002/jcb.20777

[9]   Vost, A. (1963) Osteoporosis: A necropsy study of verte brae and iliac crests. American Journal of Pathology, 43, 143-151.

[10]   Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S. and Marshak, D.R. (1999) Multilineage potential of adult human mesenchymal stem cells. Sci ence, 284, 143-147. doi:10.1126/science.284.5411.143

[11]   David, V., Martin, A., Lafage-Proust, M.H., Malaval, L., Peyroche, S., Jones, D.B., Vico, L. and Guignandon, A. (2007) Mechanical loading down-regulates peroxisome proliferator-activated receptor gamma in bone marrow stromal cells and favors osteoblastogenesis at the expense of adipogenesis. Endocrinology, 148, 2553-2562. doi:10.1210/en.2006-1704

[12]   Sutton, A.L. and MacDonald, P.N. (2003) Vitamin D: More than a “bone-a-fide” hormone. Molecular Endocri nology, 17, 777-791. doi:10.1210/me.2002-0363

[13]   Dusso, A.S., Brown, A.J. and Slatopolsky, E. (2005) Vi tamin D. Renal Physiology: American Journal of Physiology, 289, F8-F28. doi:10.1152/ajprenal.00336.2004

[14]   Jones, G., Strugnell, S.A. and DeLuca, H.F. (1998) Cur rent understanding of the molecular actions of vitamin D. Physiological Reviews, 78, 1193-1231.

[15]   Holick, M.F. (2006) High prevalence of vitamin D in adequacy and implications for health. Mayo Clinic Pro ceedings, 81, 353-373. doi:10.4065/81.3.353

[16]   Bolt, M.J., Liu, W., Qiao, G., Kong, J., Zheng, W., Krausz, T., Cs-Szabo, G., Sitrin, M.D. and Li, Y.C. (2004) Critical role of vitamin D in sulfate homeostasis: Regulation of the sodium-sulfate cotransporter by 1,25-dihydroxy-vi tamin D3. Endocrinology and Metabolism: American Journal of Physiology, 287, E744-E749. doi:10.1152/ajpendo.00151.2004

[17]   Li, Y.C., Kong, J., Wei, M., Chen, Z.F., Liu, S.Q. and Cao, L.P. (2002) 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. Jour nal of Clinical Investigation, 110, 229-238.

[18]   Mathieu, C. and Adorini, L. (2002) The coming of age of 1,25-dihydroxyvitamin D(3) analogs as immunomodula tory agents. Trends in Molecular Medicine, 8, 174-179. doi:10.1016/S1471-4914(02)02294-3

[19]   Endo, I., Inoue, D., Mitsui, T., Umaki, Y., Akaike, M., Yoshizawa, T., Kato, S. and Matsumoto, T. (2003) Dele tion of vitamin D receptor gene in mice results in abnor mal skeletal muscle development with deregulated ex pression of myoregulatory transcription factors. Endo crinology, 144, 5138-5144. doi:10.1210/en.2003-0502

[20]   Zinser, G., Packman, K. and Welsh, J. (2002) Vitamin D(3) receptor ablation alters mammary gland morphogenesis. Development, 129, 3067-3076.

[21]   Merke, J., Hofmann, W., Goldschmidt, D. and Ritz, E. (1987) Demonstration of 1,25(OH)2 vitamin D3 receptors and actions in vascular smooth muscle cells in vitro. Cal cified Tissue International, 41, 112-114. doi:10.1007/BF02555253

[22]   Somjen, D., Weisman, Y., Kohen, F., Gayer, B., Limor, R., Sharon, O., Jaccard, N., Knoll, E. and Stern, N. (2005) 25-hydroxyvitamin D3-1alpha-hydroxylase is expressed in human vascular smooth muscle cells and is upregulated by parathyroid hormone and estrogenic compounds. Cir culation, 111, 1666-1671. doi:10.1161/01.CIR.0000160353.27927.70

[23]   Merke, J., Milde, P., Lewicka, S., Hugel, U., Klaus, G., Mangelsdorf, D.J., Haussler, M.R., Rauterberg, E.W. and Ritz, E. (1989) Identification and regulation of 1,25-di hydroxyvitamin D3 receptor activity and biosynthesis of 1,25-dihydroxyvitamin D3. Studies in cultured bovine aortic endothelial cells and human dermal capillaries. Journal of Clinical Investigation, 83, 1903-1915. doi:10.1172/JCI114097

[24]   Caprio, M., Mammi, C. and Rosano, G.M. (2012) Vitamin D: a novel player in endothelial function and dysfunction. Archives of Medical Science, 8, 4-5. doi:10.5114/aoms.2012.27271

[25]   O’Connell, T.D., Berry, J.E., Jarvis, A.K., Somerman, M.J. and Simpson, R.U. (1997) 1,25-Dihydroxyvitamin D3 regulation of cardiac myocyte proliferation and hyper trophy. American Journal of Physiology, 272, H1751-H1758.

[26]   Mangelsdorf, D.J. and Evans, R.M. (1995) The RXR heterodimers and orphan receptors. Cell, 83, 841-850. doi:10.1016/0092-8674(95)90200-7

[27]   Haussler, M.R., Whitfield, G.K., Haussler, C.A., Hsieh, J.C., Thompson, P.D., Selznick, S.H., Dominguez, C.E. and Jurutka, P.W. (1998) The nuclear vitamin D receptor: Biological and molecular regulatory properties revealed. Journal of Bone and Mineral Research, 13, 325-349. doi:10.1359/jbmr.1998.13.3.325

[28]   Sato, M. and Hiragun, A. (1988) Demonstration of 1 al pha,25-dihydroxyvitamin D3 receptor-like molecule in ST 13 and 3T3 L1 preadipocytes and its inhibitory effects on preadipocyte differentiation. Journal of Cellular Phy siology, 135, 545-550. doi:10.1002/jcp.1041350326

[29]   Armani, A., Mammi, C., Marzolla, V., Calanchini, M., Antelmi, A., Rosano, G.M., Fabbri, A. and Caprio, M. (2010) Cellular models for understanding adipogenesis, adipose dysfunction, and obesity. Journal of Cellular Bio chemistry, 110, 564-572. doi:10.1002/jcb.22598

[30]   Kong, J. and Li, Y.C. (2006) Molecular mechanism of 1,25-dihydroxyvitamin D3 inhibition of adipogenesis in 3T3-L1 cells. Endocrinology and Metabolism: American Journal of Physiology, 290, E916-E924. doi:10.1152/ajpendo.00410.2005

[31]   Blumberg, J.M., Tzameli, I., Astapova, I., Lam, F.S., Flier, J.S. and Hollenberg, A.N. (2006) Complex role of the vi tamin D receptor and its ligand in adipogenesis in 3T3-L1 cells. The Journal of Biological Chemistry, 281, 11205-11213. doi:10.1074/jbc.M510343200

[32]   Rosen, E.D. (2005) The transcriptional basis of adipocyte development. Prostaglandins, Leukotrienes and Essential Fatty Acids, 73, 31-34. doi:10.1016/j.plefa.2005.04.004

[33]   Kelly, K.A. and Gimble, J.M. (1998) 1,25-Dihydroxy vitamin D3 inhibits adipocyte differentiation and gene expression in murine bone marrow stromal cell clones and primary cultures. Endocrinology, 139, 2622-2628. doi:10.1210/en.139.5.2622

[34]   MacLaughlin, J. and Holick, M.F. (1985) Aging decreases the capacity of human skin to produce vitamin D3. Jour nal of Clinical Investigation, 76, 1536-1538. doi:10.1172/JCI112134

[35]   Chan, G.K. and Duque, G. (2002) Age-related bone loss: Old bone, new facts. Gerontology, 48, 62-71. doi:10.1159/000048929

[36]   Chavassieux, P.M., Arlot, M.E., Reda, C., Wei, L., Yates, A.J. and Meunier, P.J. (1997) Histomorphometric assess ment of the long-term effects of alendronate on bone quality and remodeling in patients with osteoporosis. Journal of Clinical Investigation, 100, 1475-1480. doi:10.1172/JCI119668

[37]   Rosen, E.D. and MacDougald, O.A. (2006) Adipocyte differentiation from the inside out. Nature Reviews Mo lecular Cell Biology, 7, 885-896. doi:10.1038/nrm2066

[38]   Tzameli, I., Fang, H., Ollero, M., Shi, H., Hamm, J.K., Kievit, P., Hollenberg, A.N. and Flier, J.S. (2004) Regu lated production of a peroxisome proliferator-activated receptor-gamma ligand during an early phase of adipo cyte differentiation in 3T3-L1 adipocytes. The Journal of Biological Chemistry, 279, 36093-36102. doi:10.1074/jbc.M405346200

[39]   Gimble, J.M., Robinson, C.E., Wu, X., Kelly, K.A., Rod riguez, B.R., Kliewer, S.A., Lehmann, J.M. and Morris, D.C. (1996) Peroxisome proliferator-activated receptor gamma activation by thiazolidinediones induces adipo genesis in bone marrow stromal cells. Molecular Phar macology, 50, 1087-1094.

[40]   Lecka-Czernik, B., Moerman, E.J., Grant, D.F., Lehmann, J.M., Manolagas, S.C. and Jilka, R.L. (2002) Divergent effects of selective peroxisome proliferator-activated re ceptor-gamma 2 ligands on adipocyte versus osteoblast differentiation. Endocrinology, 143, 2376-2384. doi:10.1210/en.143.6.2376

[41]   Rosen, E.D., Hsu, C.H., Wang, X., Sakai, S., Freeman, M. W., Gonzalez, F.J. and Spiegelman, B.M. (2002) C/EBP alpha induces adipogenesis through PPARgamma: A uni fied pathway. Genes & Development, 16, 22-26. doi:10.1101/gad.948702

[42]   Fu, M., Sun, T., Bookout, A.L., Downes, M., Yu, R.T., Evans, R.M. and Mangelsdorf, D.J. (2005) A nuclear re0 ceptor atlas: 3T3-L1 adipogenesis. Molecular Endocri nology, 19, 2437-2450. doi:10.1210/me.2004-0539

[43]   Imagawa, M., Tsuchiya, T. and Nishihara, T. (1999) Iden tification of inducible genes at the early stage of adipo cyte differentiation of 3T3-L1 cells. Biochemical and Biophysical Research Communications, 254, 299-305. doi:10.1006/bbrc.1998.9937

[44]   Marzolla, V., Armani, A., Zennaro, M. C., Cinti, F., Mammi, C., Fabbri, A., Rosano, G.M. and Caprio, M. (2012) The role of the mineralocorticoid receptor in adi pocyte biology and fat metabolism. Molecular and Cel lular Endocrinology, 350, 281-288. doi:10.1016/j.mce.2011.09.011

[45]   Caprio, M., Antelmi, A., Chetrite, G., Muscat, A., Mammi, C., Marzolla, V., Fabbri, A., Zennaro, M.C. and Feve, B. (2011) Antiadipogenic effects of the mineralocorticoid receptor antagonist drospirenone: Potential implications for the treatment of metabolic syndrome. Endocrinology, 152, 113-125. doi:10.1210/en.2010-0674

[46]   Burton, G.R., Guan, Y., Nagarajan, R. and McGehee, R.E., Jr. (2002) Microarray analysis of gene expression during early adipocyte differentiation. Gene, 293, 21-31. doi:10.1016/S0378-1119(02)00726-6