ABB  Vol.4 No.8 B , August 2013
Potential of new anti-cancer agents targeting the nuclear translocation signaling of HB-EGF C-terminal fragments during the development of colitis-associated cancer
Abstract: In inflammatory bowel diseases (IBD) such as ulcerative colitis (UC) and Crohn’s disease (CD), the duration and severity of inflammation are responsible for the development of colorectal cancer. Inflammatory cytokines such as interleukin (IL)-8 and tumor necrotic factor (TNF)-a, which are released by epithelial and immune cells, are involved in the pathogenesis of colitis-associated cancer. Current treatments for advanced colorectal cancers focus primarily on targeting epidermal growth factor receptor (EGFR) signaling. IL-8 (a G-protein coupled receptor (GPCR) agonist), which is involved in neutrophil recruitment and activation in persistent active colitis, also promotes cleavage of theproheparin-binding epidermal growth factor—like growth factor (proHB-EGF) through a disintegrin and metalloproteinase (ADAM), so that the resulting soluble HB-EGF activates EGFR. In parallel, the carboxy-terminal fragment of proHB-EGF (HB-EGF-CTF) translocates into the inner nuclear membrane, where HB-EGF-CTF binds the nuclear promyelocytic leukemia zinc finger (PLZF) protein, resulting in the nuclear export of the PLZF transcriptional repressor and thereby affecting cell proliferation. Screening for potent chemical inhibitors of the interactions between HB-EGF-CTF and PLZF identified telmisartan (and related compounds in corporating a biphenyl tetrazole moiety) as inhibitors of cell proliferation. Here we focus on the inhibitory effects of these compounds on cell proliferation, demonstrating the potential for targeting the nuclear translocation of HB-EGF-CTF in the treatment of colitis-associated cancer.
Cite this paper: Tanida, S. , Ozeki, K. , Mizoshita, T. , Tsukamoto, H. , Kataoka, H. and Joh, T. (2013) Potential of new anti-cancer agents targeting the nuclear translocation signaling of HB-EGF C-terminal fragments during the development of colitis-associated cancer. Advances in Bioscience and Biotechnology, 4, 19-26. doi: 10.4236/abb.2013.48A2004.

[1]   Langholz, E., Munkholm, P., Davidsen, M. and Binder, V. (1992) Colorectal cancer risk and mortality in patients with ulcerative colitis. Gastroenterology, 103, 1444-1451.

[2]   Gyde, S.N., Prior, P., Allan, R.N., Stevens, A., Jewell, D.P., Truelove, S.C., Lofberg, R., Brostrom, O. and Hellers, G. (1988) Colorectal cancer in ulcerative colitis: A cohort study of primary referrals from three centres. Gut, 29, 206-217. doi:10.1136/gut.29.2.206

[3]   Harpaz, N.T.I. (1996) Colorectal cancer in idiopathic inflammatory bowel disease. Seminars in Diagnostic Pathology, 13, 339-357.

[4]   Cunningham, D., Humblet, Y., Siena, S., Khayat, D., Bleiberg, H., Santoro, A., Bets, D., Mueser, M., Harstrick, A., Verslype, C., Chau, I. and Van Cutsem, E. (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. The New England Journal of Medicine, 351, 337-345. doi:10.1056/NEJMoa033025

[5]   Van Cutsem, E., Kohne, C.H., Hitre, E., Zaluski, J., Chang Chien, C.R., Makhson, A., D’Haens, G., Pinter, T., Lim, R., Bodoky, G., Roh, J.K., Folprecht, G., Ruff, P., Stroh, C., Tejpar, S., Schlichting, M., Nippgen, J. and Rougier, P. (2009) Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. The New England Journal of Medicine, 360, 1408-1417. doi:10.1056/NEJMoa0805019

[6]   Amado, R.G., Wolf, M., Peeters, M., Van Cutsem, E., Siena, S., Freeman, D.J., Juan, T., Sikorski, R., Suggs, S., Radinsky, R., Patterson, S.D. and Chang, D.D. (2008) Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 26, 1626-1634.

[7]   Hanai, H., Takeuchi, K., Iida, T., Kashiwagi, N., Saniabadi, A.R., Matsushita, I., Sato, Y., Kasuga, N. and Nakamura, T. (2004) Relationship between fecal calprotectin, intestinal inflammation, and peripheral blood neutrophils in patients with active ulcerative colitis. Digestive Diseases and Sciences, 49, 1438-1443. doi:10.1023/B:DDAS.0000042243.47279.87

[8]   Sawada, K., Muto, T., Shimoyama, T., Satomi, M., Sawada, T., Nagawa, H., Hiwatashi, N., Asakura, H. and Hibi, T. (2003) Multicenter randomized controlled trial for the treatment of ulcerative colitis with a leukocytapheresis column. Current Pharmaceutical Design, 9, 307-321. doi:10.2174/1381612033391928

[9]   Mizushima, T., Tanida, S., Mizoshita, T., Hirata, Y., Murakami, K., Shimura, T., Kataoka, H., Kamiya, T. and Joh, T. (2011) A complicated case of tacrolimus-induced rapid remission after cesarean section in the early third trimester for refractory severe ulcerative colitis flaring in the initial period of gestation. Case Reports in Gastroenterology, 5, 144-151.

[10]   Mazzucchelli, L., Hauser, C., Zgraggen, K., Wagner, H., Hess, M., Laissue, J.A. and Mueller, C. (1994) Expression of interleukin-8 gene in inflammatory bowel disease is related to the histological grade of active inflammation. American Journal of Pathology, 144, 997-1007.

[11]   Isaacs, K.L., Sartor, R.B. and Haskill, S. (1992) Cytokine messenger RNA profiles in inflammatory bowel disease mucosa detected by polymerase chain reaction amplification. Gastroenterology, 103, 1587-1595.

[12]   Anezaki, K., Asakura, H., Honma, T., Ishizuka, K., Funakoshi, K., Tsukada, Y. and Narisawa, R. (1998) Correlations between interleukin-8, and myeloperoxidase or luminol-dependent chemiluminescence in inflamed mucosa of ulcerative colitis. Internal Medicine, 37, 253-258. doi:10.2169/internalmedicine.37.253

[13]   Koch, A.E., Polverini, P.J., Kunkel, S.L., Harlow, L.A., DiPietro, L.A., Elner, V.M., Elner, S.G. and Strieter, R.M. (1992) Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science, 258, 1798-1801. doi:10.1126/science.1281554

[14]   Murphy, P.M., Baggiolini, M., Charo, I.F., Hebert, C.A., Horuk, R., Matsushima, K., Miller, L.H., Oppenheim, J.J. and Power, C.A. (2000) International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacological Reviews, 52, 145-176.

[15]   Mukaida, N. (2003) Pathophysiological roles of interleukin-8/CXCL8 in pulmonary diseases. American Journal of Physiology—Lung Cellular and Molecular Physiology, 284, L566-577.

[16]   Yuan, A., Yang, P.C., Yu, C.J., Chen, W.J., Lin, F.Y., Kuo, S.H. and Luh, K.T. (2000) Interleukin-8 messenger ribonucleic acid expression correlates with tumor progression, tumor angiogenesis, patient survival, and timing of relapse in non-small-cell lung cancer. American Journal of Respiratory and Critical Care Medicine, 162, 1957-1963. doi:10.1164/ajrccm.162.5.2002108

[17]   Kitadai, Y., Haruma, K., Mukaida, N., Ohmoto, Y., Matsutani, N., Yasui, W., Yamamoto, S., Sumii, K., Kajiyama, G., Fidler, I.J. and Tahara, E. (2000) Regulation of disease-progression genes in human gastric carcinoma cells by interleukin 8. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 6, 2735-2740.

[18]   Murphy, C., McGurk, M., Pettigrew, J., Santinelli, A., Mazzucchelli, R., Johnston, P.G., Montironi, R. and Waugh, D.J. (2005) Nonapical and cytoplasmic expression of interleukin-8, CXCR1, and CXCR2 correlates with cell proliferation and microvessel density in prostate cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 11, 4117-4127.

[19]   Sparmann, A. and Bar-Sagi, D. (2004) Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell, 6, 447-458. doi:10.1016/j.ccr.2004.09.028

[20]   Fischer, O.M., Hart, S., Gschwind, A., Prenzel, N. and Ullrich, A. (2004) Oxidative and osmotic stress signaling in tumor cells is mediated by ADAM proteases and heaprin-binding epidermal growth factor. Molecular and Cellular Biology, 24, 5172-5183. doi:10.1128/MCB.24.12.5172-5183.2004

[21]   Schafer, B., Gschwind, A. and Ullrich, A. (2004) Multiple G-protein-coupled receptor signals converge on the epidermal growth factor receptor to promote migration and invasion. Oncogene, 23, 991-999. doi:10.1038/sj.onc.1207278

[22]   Itoh, Y., Joh, T., Tanida, S., Sasaki, M., Kataoka, H., Itoh, K., Oshima, T., Ogasawara, N., Togawa, S., Wada, T., Kubota, H., Mori, Y., Ohara, H., Nomura, T., Higashiyama, S. and Itoh, M. (2005) IL-8 promotes cell proliferation and migration through metalloproteinase-cleavage proHB-EGF in human colon carcinoma cells. Cytokine, 29, 275-282. doi:10.1016/j.cyto.2004.11.005

[23]   Joh, T., Kataoka, H., Tanida, S., Watanabe, K., Ohshima, T., Sasaki, M., Nakao, H., Ohhara, H., Higashiyama, S. and Itoh, M. (2005) Helicobacter pylori-stimulated interleukin-8 (IL-8) promotes cell proliferation through transactivation of epidermal growth factor receptor (EGFR) by disintegrin and metalloproteinase (ADAM) activation. Digestive Diseases and Sciences, 50, 2081-2089. doi:10.1007/s10620-005-3011-0

[24]   Tanida, S., Joh, T., Itoh, K., Kataoka, H., Sasaki, M., Ohara, H., Nakazawa, T., Nomura, T., Kinugasa, Y., Ohmoto, H., Ishiguro, H., Yoshino, K., Higashiyama, S. and Itoh, M. (2004) The mechanism of cleavage of EGFR ligands induced by inflammatory cytokines in gastric cancer cells. Gastroenterology, 127, 559-569. doi:10.1053/j.gastro.2004.05.017

[25]   Chalaris, A., Adam, N., Sina, C., Rosenstiel, P., Lehmann-Koch, J., Schirmacher, P., Hartmann, D., Cichy, J., Gavrilova, O., Schreiber, S., Jostock, T., Matthews, V., Hasler, R., Becker, C., Neurath, M.F., Reiss, K., Saftig, P., Scheller, J. and Rose-John, S. (2010) Critical role of the disintegrin metalloprotease ADAM17 for intestinal inflammation and regeneration in mice. The Journal of Experimental Medicine, 207, 1617-1624. doi:10.1084/jem.20092366

[26]   Nanba, D., Mammoto, A., Hashimoto, K. and Higashiyama, S. (2003) Proteolytic release of the carboxy-terminal fragment of proHB-EGF causes nuclear export of PLZF. The Journal of Cell Biology, 163, 489-502. doi:10.1083/jcb.200303017

[27]   Tanida, S., Kataoka, H., Mizoshita, T., Shimura, T., Kamiya, T. and Joh, T. (2010) Intranuclear translocation signaling of HB-EGF carboxy-terminal fragment and mucosal defense through cell proliferation and migration in digestive tracts. Digestion, 82, 145-149. doi:10.1159/000310903

[28]   Shimura, T., Kataoka, H., Ogasawara, N., Kubota, E., Sasaki, M., Tanida, S. and Joh, T. (2008) Suppression of proHB-EGF carboxy-terminal fragment nuclear translocation: A new molecular target therapy for gastric cancer. Clinical Cancer Research, 14, 3956-3965. doi:10.1158/1078-0432.CCR-07-4794

[29]   Ozeki, K., Tanida, S., Morimoto, C., Inoue, Y., Mizoshita, T., Tsukamoto, H., Shimura, T., Kataoka, H., Kamiya, T., Nishiwaki, E., Ishiguro, H., Higashiyama, S. and Joh, T. (2013) Telmisartan inhibits cell proliferation by blocking nuclear translocation of ProHB-EGF C-terminal fragment in colon cancer cells. PloS One, 8, e56770. doi:10.1371/journal.pone.0056770

[30]   Goishi, K., Higashiyama, S., Klagsbrun, M., Nakano, N., Umata, T., Ishikawa, M., Mekada, E. and Taniguchi, N. (1995) Phorbol ester induces the rapid processing of cell surface heparin-binding EGF-like growth factor: Conversion from juxtacrine to paracrine growth factor activity. Molecular Biology of the Cell, 6, 967-980.

[31]   Wienen, W. (2000) A review on telmisartan: A novel, long-acting angiotensin II-receptor antagonist. Cardiovascular Drug Reviews, 18, 127-156. doi:10.1111/j.1527-3466.2000.tb00039.x

[32]   Asakura, M., Kitakaze, M., Takashima, S., Liao, Y., Ishikura, F., Yoshinaka, T., Ohmoto, H., Node, K., Yoshino, K., Ishiguro, H., Asanuma, H., Sanada, S., Matsumura, Y., Takeda, H., Beppu, S., Tada, M., Hori, M. and Higashiyama, S. (2002) Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: Metalloproteinase inhibitors as a new therapy. Nature Medicine, 8, 35-40. doi:10.1038/nm0102-35

[33]   Teo, K.K. (2011) Effects of telmisartan, irbesartan, valsartan, candesartan, and losartan on cancers in 15 trials enrolling 138,769 individuals. Journal of Hypertension, 29, 623-635.