NS  Vol.5 No.8 , August 2013
New proteins and protein species identified in human umbilical vein endothelial cells by Fourier transform ion cyclotron resonance-mass spectrometry
Abstract: For many years, HUVEC.com1 public database provides biological data relative to the proteome of human umbilical vein endothelial cells (HU-VECs), which are the most used human endothelial cell model in vascular biology. The proteins were identified using two-dimensional gel electrophoresis (2-DGE) for protein separation coupled with Matrix Assisted Laser Desorption-Ionization Mass Spectrometry (MALDI-TOF-MS) for identification. We present here an important update of with 521 protein identifications as determined using Fourier transformed ion cyclotron resonance-mass spectrometry (FTICR-MS) applied to an unstained 2-DGE gel cut in 221 squared pieces; each identified protein being accompanied by a semi-quantitative three dimensional visualization is called “score imaging”. The squared analyzed gel and the alphabetical list of identified proteins, linked with their corresponding three-dimensional score imaging, are available at This original approach led to the establishment of the most protein-rich and informative database for HUVECs, as well as to the identification of some protein species, in particular with phosphorylation.
Cite this paper: Baudin, B. , Bruneel, A. , Pernet, P. , Vaubourdolle, M. , Haddad, I. , Marcelo, P. , Rossier, J. and Vinh, J. (2013) New proteins and protein species identified in human umbilical vein endothelial cells by Fourier transform ion cyclotron resonance-mass spectrometry. Natural Science, 5, 919-924. doi: 10.4236/ns.2013.58111.

[1]   Pernet, P., Bruneel, A., Baudin, B. and Vaubourdolle, M. (2006) PHProteomicDB: A module for two-dimensional gel electrophoresis database creation on personal web sites. Genomics Proteomics and Bioinformatics, 4, 134-136. doi:10.1016/S1672-0229(06)60024-7

[2]   Bruneel, A., Labas, V., Mailloux, A., Sharma, S., Vinh, J., Vaubourdolle, M. and Baudin, B. (2003) Proteomic study of human umbilical vein endothelial cells in culture. Proteomics, 3, 714-723. doi:10.1002/pmic.200300409

[3]   Bruneel, A., Labas, V., Mailloux, A., Sharma, S., Royer, N., Vinh, J., Pernet, P., Vaubourdolle, M. and Baudin, B. (2005) Proteomics of human umbilical vein endothelial cells applied to etoposide-induced apoptosis. Proteomics, 5, 3876-3884. doi:10.1002/pmic.200401239

[4]   Rabilloud, T. (2002) Two-dimensional gel electrophoresis in proteomics: Old, old fashioned, but it still climbs up the mountains. Proteomics, 2, 3-10. doi:10.1002/1615-9861(200201)2:1<3::AID-PROT3>3.0.CO;2-R

[5]   Campostrini, N., Areces, L.B., Rappsilber, J., Pietrogran de, M.C., Dondi, F., Pastorino, F., Ponzoni, M. and Righetti, P.G. (2005) Spot overlapping in two-dimensio nal maps: A serious problem ignored for much too long. Proteomics, 5, 2385-2395. doi:10.1002/pmic.200401253

[6]   Baudin, B., Bruneel, A., Bosselut, N. and Vaubourdolle, M. (2007) A protocol for isolation and culture of human umbilical vein endothelial cells. Nature Protocols, 2, 481-485. doi:10.1038/nprot.2007.54

[7]   Shevchenko, A., Wilm, M., Vorm, O. and Mann, M. (1996) Mass spectrometric sequencing of proteins in silver-stained polyacrylamide gels. Analytical Chemistry, 68, 850-858. doi:10.1021/ac950914h

[8]   Olsen, J.V., Ong, S.E. and Mann, M. (2004) Trypsin cleaves exclusively C-terminal to arginine and lysine resi dues. Molecular and Cellular Proteomics, 3, 608-614. doi:10.1074/mcp.T400003-MCP200

[9]   Kapp, E.A., Schutz, F., Connolly, L.M., Chakel, J.A., Meza, J.E., Miller, C.A., Fenyo, D., Eng, J.K., Adkins, J.N., Omenn, G.S. and Simpson, R.J. (2005) An evalu ation, comparison, and accurate benchmarking of several publicly available MS/MS search algorithms: Sensitivity and specificity analysis. Proteomics, 5, 3475-3490. doi:10.1002/pmic.200500126

[10]   Gao, J., Opiteck, G.J., Friedrichs, M.S., Dongre A.R. and Hefta, S.A. (2003) Changes in the protein expression of yeast as a function of carbon source. Journal of Proteome Research, 2, 643-649. doi:10.1021/pr034038x

[11]   Gao, J., Friedrichs, M.S., Dongre, A.R. and Opiteck, G.J. (2005) Guidelines for the routine application of the pep tide hits technique. Journal of the American Society of Mass Spectrometry, 16, 1231-1238. doi:10.1016/j.jasms.2004.12.002

[12]   Gao, J., Garulacan, L.A., Storm, S.M., Opiteck, G.J., Dubaquie, Y., Hefta, S.A., Dambach, D.M. and Dongre, A.R. (2005) Biomarker discovery in biological fluids. Methods, 35, 291-302. doi:10.1016/j.ymeth.2004.08.020

[13]   Yanofsky, C.M., Bell, A.W., Lesimple, S., Morales, F., Lam, T.T., Blakney, G.T., Marshall, A.G., Carillo, B., Lekpor K., Boismenu, D. and Kearney, R.E. (2005) Mul ticomponent internal recalibration of an LC-FTICR-MS analysis employing a partially characterized complex peptide mixture: Systematic and random errors. Analyti cal Chemistry, 77, 7246-7254. doi:10.1021/ac050640q

[14]   Qian, W.J., Liu, T., Monroe, M.E., Strittmatter, E.F., Ja cobs, J.M., Kangas, L.J., Petritis, K., Camp, D.G. and Smith, R.D. (2005) Probability-based evaluation of pep tide and protein identifications from tandem mass spec trometry and SEQUEST analysis: The human proteome. Journal of Proteome Research, 4, 53-62. doi:10.1021/pr0498638

[15]   Meier, M., King, G.L., Clermont, A., Perez, A., Hayashi, M. and Feener, E.P. (2001) Angiotensin AT(1) receptor stimulates heat shock protein 27 phosphorylation in vitro and in vivo. Hypertension, 38, 1260-1265. doi:10.1161/hy1201.096573

[16]   Annesley, T.M. (2003) Ion suppression in mass spectro metry. Clinical Chemistry, 49, 1041-1044. doi:10.1373/49.7.1041

[17]   Weiss, W. and Gorg, A. (2009) High-resolution two-di mensional electrophoresis. Methods in Molecular Biology, 564, 13-32. doi:10.1007/978-1-60761-157-8_2