Back
 ICA  Vol.4 No.3 , August 2013
A Feedforward Controller to Regulate the Chemical Composition of Molten Steel in a Continuous Casting Tundish
Abstract: A feedforward controller for the automatic regulation of chemical composition of molten steel in the tundish of a continuous casting machine is proposed in this work. The flow of molten steel inside the tundish is modeled as a distributed parameter system, and the resulting partial differential equation is transformed into a set of ordinary differential equations by means of the finite differences technique. From the above set and using a proper boundary condition, a feedforward control law is synthesized. No experimental tests are reported, however, the dynamic performance of the controller is illustrated by means of numerical simulations.
Cite this paper: M. Barron, D. Yolotzin and I. Hilerio, "A Feedforward Controller to Regulate the Chemical Composition of Molten Steel in a Continuous Casting Tundish," Intelligent Control and Automation, Vol. 4 No. 3, 2013, pp. 245-249. doi: 10.4236/ica.2013.43029.
References

[1]   R. Widdowson, “Development of Compositional Trim ming and Control in the Concast Tundish Based on in Situ Liquid Steel Analysis,” Report EUR 18300 EN, European Commission, 1998.

[2]   M. A. Demetriou, “Synchronization and Consensus Con trollers for a Class of Parabolic Distributed Parameter Systems,” Systems & Control Letters, Vol. 62, No. 1, 2013, pp. 70-76. doi:10.1016/j.sysconle.2012.10.010

[3]   M. R. Garcia, C. Vilas, L. O. Santos and A. A. Alonso, “A Robust Multi-Model Predictive Controller for Distrib uted Parameter Systems,” Journal of Process Control, Vol. 22, No. 1, 2012, pp. 60-71. doi:10.1016/j.jprocont.2011.10.008

[4]   E. Aguilar-Garnica, J. P. Garcia-Sandoval and P. Gon zalez-Alvarez, “PI Controller Design for a Class of Dis tributed Parameter Systems,” Chemical Engineering Sci ence, Vol. 66, No. 18, 2011, pp. 4009-4019. doi:10.1016/j.ces.2011.05.025

[5]   D. Bonvin, R. G. Rinker and D. A. Mellichamp, “On Controlling an Autothermal Fixed-Bed Reactor at an Un stable Steady State,” Chemical Engineering Science, Vol. 38, No. 2, 1983, pp. 233-244. doi:10.1016/0009-2509(83)85005-2

[6]   H. M. Budman, C. Webb, T. R. Holcomb and M. Morari, “Robust Inferential Control for a Packed-Bed Reactor,” Industrial Engineering & Chemistry Research, Vol. 31, No. 7, 1992, pp. 1665-1679.

[7]   A. Cinar, “Controller Design for a Tubular Catalytic Re actor,” Canadian Journal of Chemical Engineering, Vol. 62, No. 6, 1984, pp. 746-754. doi:10.1002/cjce.5450620604

[8]   E. M. Hanczyc and A. Palazoglu, “Sliding Mode Control of Nonlinear Distributed Parameter Chemical Processes,” Industrial Engineering & Chemistry Research, Vol. 34, No. 2, 1995, pp. 557-566.

[9]   E. M. Hanczyc and A. Palazoglu, “Nonlinear Control of a Distributed Parameter Process: The Case of Multiple Characteristics,” Industrial Engineering & Chemistry Research, Vol. 34, No. 12, 1995, pp. 4406-4412. doi:10.1021/ie00039a032

[10]   H. Sira-Ramírez, “Distributed Sliding Mode Control in Systems Described by Quasilinear Partial Differential Equations,” Systems & Control Letters, Vol. 13, No. 2, 1989, pp. 177-181. doi:10.1016/0167-6911(89)90036-4

[11]   F. J. Doyle III, H. M. Budman and M. Morari, “Lineariz ing Controller Design for a Packed-Bed Reactor Using a Low-Order Wave Propagation Model,” Industrial Engi neering & Chemistry Research, Vol. 35, No. 10, 1996, pp. 3567-3579. doi:10.1021/ie9404083

[12]   R. B. Bird, W. E. Stewart and E. N. Lightfoot, “Transport Phenomena,” 2nd Edition, John Wiley & Sons, New York, 2007.

[13]   G. Stephanopoulos, “Chemical Process Control,” Prentice Hall, Englewood Cliffs, 1984.

[14]   S. Chapra and R. Canale, “Numerical Methods for Engi neers,” 6th Edition, McGraw Hill College, Columbus, 2009.

 
 
Top