ICA  Vol.4 No.3 , August 2013
A Feedforward Controller to Regulate the Chemical Composition of Molten Steel in a Continuous Casting Tundish

A feedforward controller for the automatic regulation of chemical composition of molten steel in the tundish of a continuous casting machine is proposed in this work. The flow of molten steel inside the tundish is modeled as a distributed parameter system, and the resulting partial differential equation is transformed into a set of ordinary differential equations by means of the finite differences technique. From the above set and using a proper boundary condition, a feedforward control law is synthesized. No experimental tests are reported, however, the dynamic performance of the controller is illustrated by means of numerical simulations.

Cite this paper
M. Barron, D. Yolotzin and I. Hilerio, "A Feedforward Controller to Regulate the Chemical Composition of Molten Steel in a Continuous Casting Tundish," Intelligent Control and Automation, Vol. 4 No. 3, 2013, pp. 245-249. doi: 10.4236/ica.2013.43029.
[1]   R. Widdowson, “Development of Compositional Trim ming and Control in the Concast Tundish Based on in Situ Liquid Steel Analysis,” Report EUR 18300 EN, European Commission, 1998.

[2]   M. A. Demetriou, “Synchronization and Consensus Con trollers for a Class of Parabolic Distributed Parameter Systems,” Systems & Control Letters, Vol. 62, No. 1, 2013, pp. 70-76. doi:10.1016/j.sysconle.2012.10.010

[3]   M. R. Garcia, C. Vilas, L. O. Santos and A. A. Alonso, “A Robust Multi-Model Predictive Controller for Distrib uted Parameter Systems,” Journal of Process Control, Vol. 22, No. 1, 2012, pp. 60-71. doi:10.1016/j.jprocont.2011.10.008

[4]   E. Aguilar-Garnica, J. P. Garcia-Sandoval and P. Gon zalez-Alvarez, “PI Controller Design for a Class of Dis tributed Parameter Systems,” Chemical Engineering Sci ence, Vol. 66, No. 18, 2011, pp. 4009-4019. doi:10.1016/j.ces.2011.05.025

[5]   D. Bonvin, R. G. Rinker and D. A. Mellichamp, “On Controlling an Autothermal Fixed-Bed Reactor at an Un stable Steady State,” Chemical Engineering Science, Vol. 38, No. 2, 1983, pp. 233-244. doi:10.1016/0009-2509(83)85005-2

[6]   H. M. Budman, C. Webb, T. R. Holcomb and M. Morari, “Robust Inferential Control for a Packed-Bed Reactor,” Industrial Engineering & Chemistry Research, Vol. 31, No. 7, 1992, pp. 1665-1679.

[7]   A. Cinar, “Controller Design for a Tubular Catalytic Re actor,” Canadian Journal of Chemical Engineering, Vol. 62, No. 6, 1984, pp. 746-754. doi:10.1002/cjce.5450620604

[8]   E. M. Hanczyc and A. Palazoglu, “Sliding Mode Control of Nonlinear Distributed Parameter Chemical Processes,” Industrial Engineering & Chemistry Research, Vol. 34, No. 2, 1995, pp. 557-566.

[9]   E. M. Hanczyc and A. Palazoglu, “Nonlinear Control of a Distributed Parameter Process: The Case of Multiple Characteristics,” Industrial Engineering & Chemistry Research, Vol. 34, No. 12, 1995, pp. 4406-4412. doi:10.1021/ie00039a032

[10]   H. Sira-Ramírez, “Distributed Sliding Mode Control in Systems Described by Quasilinear Partial Differential Equations,” Systems & Control Letters, Vol. 13, No. 2, 1989, pp. 177-181. doi:10.1016/0167-6911(89)90036-4

[11]   F. J. Doyle III, H. M. Budman and M. Morari, “Lineariz ing Controller Design for a Packed-Bed Reactor Using a Low-Order Wave Propagation Model,” Industrial Engi neering & Chemistry Research, Vol. 35, No. 10, 1996, pp. 3567-3579. doi:10.1021/ie9404083

[12]   R. B. Bird, W. E. Stewart and E. N. Lightfoot, “Transport Phenomena,” 2nd Edition, John Wiley & Sons, New York, 2007.

[13]   G. Stephanopoulos, “Chemical Process Control,” Prentice Hall, Englewood Cliffs, 1984.

[14]   S. Chapra and R. Canale, “Numerical Methods for Engi neers,” 6th Edition, McGraw Hill College, Columbus, 2009.