AiM  Vol.3 No.4 , August 2013
Genomic Analysis of Anabaena variabilis Mutants PK17 and PK84 That Are Characterised by High Production of Molecular Hydrogen

The use of cyanobacteria for producing molecular hydrogen is one of the desirable tasks of photobiotechnology. Some years ago, we isolated several chemically induced mutants of the cyanobacterium Anabaena variabilis ATCC 29413 that exhibited a high level of H2-production; but the genetic nature of these mutants remained unresolved. To reveal mutations that could be responsible for enhancement of H2-production in two independent mutants, PK17 and PK84, the pyrosequencing of their entire genomes was performed. The results were analyzed on the basis of comparison with the complete genome sequence of the reference strain Anabaena variabilis ATCC 29413. The genomes of mutants PK17 and RK84 contain 107 and 104 point deviations from the reference genome, respectively. The most probable reason for the increase of H2-production in mutant PK17 is the mutation identified in the gene hupL encoding the large subunit of uptake hydrogenase. A high level of H2-production in mutant PK84 could be the result of a mutation in a conserved part of the gene hypF, which participates in the post-translation maturation of hydrogenase complexes.

Cite this paper
S. Shestakov, L. Mikheeva, A. Mardanov, N. Ravin and K. Skryabin, "Genomic Analysis of Anabaena variabilis Mutants PK17 and PK84 That Are Characterised by High Production of Molecular Hydrogen," Advances in Microbiology, Vol. 3 No. 4, 2013, pp. 350-365. doi: 10.4236/aim.2013.34049.
[1]   R. C. Prince and H. S. Kheshgi, “The Photobiological Production of Hydrogen: Potential Efficiency and Effectiveness as a Renewable Fuel,” Critical Reviews in Microbiology, Vol. 31, No. 1, 2005, pp. 19-31. doi:10.1080/10408410590912961

[2]   D. Dutta, D. De, S. Chaudhuris and S. K. Bhattacharya, “Hydrogen Production by Cyanobacteria,” Microbial Cell Factories, Vol. 4, 2005, pp. 36-46. doi:10.1186/1475-2859-4-36

[3]   P. Tamagnini, E. Leitao, P. Oliveira, D. Ferreira, F. A. L. Pinto, D. J. Harris, T. Heidorn and P. Lindblad, “Cyanobacterial Hydrogenases: Diversity, Regulation and Application,” FEMS Microbiology Reviews, Vol. 31, No. 6, 2007, pp. 692-720. doi:10.1111/j.1574-6976.2007.00085.x

[4]   H. Bothe, O. Schmitz, M. G. Yates and W. E. Newton, “Nitrogen Fixation and Hydrogen Metabolism in Cyanobacteria,” Microbiology Molecular Biology Reviews, Vol. 74, No. 4, 2010, pp. 529-551. doi:10.1128/MMBR.00033-10

[5]   S. V. Shestakov and L. E. Mikheeva, “Genetic Control of Hydrogen Metabolism in Cyanobacteria,” Russian Journal of Genetics, Vol. 42, No. 11, 2006, pp. 1272-1284. doi:10.1134/S1022795406110093

[6]   L. E. Mikheeva, O. A. Koksharova and S. V. Shestakov, “Mutant of the Cyanobacterium Anabaena variabilis ATCC 29413 that Produces Hydrogen,” Vestnik of Moscow University, Section Biology, No. 2, 1994, pp. 54-57 (in Russian).

[7]   L. E. Mikheeva, O. Schmitz, S. V. Shestakov and H. Bothe, “Mutants of the Cyanobacterium Anabaena variabilis Altered in Hydrogenase Activity,” Zeitschrift für Naturforschung, Vol. 50C, 1995, pp. 505-510.

[8]   V. B. Borodin, A. Tsygankov, K. K. Rao and D. O. Hall, “Hydrogen Production by Anabaena variabilis PK84 under Simulated Outdoor Conditions,” Biotechnology and Bioengineering, Vol. 69, No. 5, 2000, pp. 479-485. doi:10.1002/1097-0290(20000905)69:5<478::AID-BIT2>3.0.CO;2-L

[9]   J. Liu, V. E. Bukatin and A. A. Tsygankov, “Light Energy Conversion into H2 by Anabaena variabilis Mutant PK84 Dense Cultures Exposed to Nitrogen Limitation,” International Journal of Hydrogen Energy, Vol. 31, No. 11, 2006, pp. 1591-1596. doi:10.1016/j.ijhydene.2006.06.025

[10]   T. Happe, K. Schutz and H. Bohme, “Transcriptional and Mutational Analysis of the Uptake Hydrogenase of the Filamentous Cyanobacterium Anabaena variabilis,” Journal of Bacterioogy, Vol. 182, No. 6, 2000, pp. 1624-1631. doi:10.1128/JB.182.6.1624-1631.2000

[11]   H. Masukawa, M. Mochimaru and H. Sakurai, “Disruption of the Uptake Hydrogenase Gene, But Not of the Bidirectional Hydrogenase Gene, Leads to Enhanced Photobiological Hydrogen Production by Nitrogen-Fixing Cyanobacterium Anabaena sp. PCC 7120,” Applied Microbiology and Biotechnology, Vol. 58, No. 5, 2002, pp. 618-624. doi:10.1007/s00253-002-0934-7

[12]   P. Lindberg, K. Schutz, T. Happe and P. Lindblad, “A Hydrogen-Producing Hydrogenase-Free Mutant Strain of Nostoc punctiforme ATCC 29133,” International Journal of Hydrogen Energy, Vol. 27, No. 11-12, 2002, pp. 1291-1296. doi:10.1016/S0360-3199(02)00121-0

[13]   P. Lindblad, K. Christensson, P. Lindberg, A. Fedorov, F. Pinto and A. Tsygankov, “Photoproduction of H2 by Wild Type Anabaena PCC 7120 and a Hydrogen Uptake Deficient Mutant: From Laboratory Experiments to Outdoor Culture,” International Journal of Hydrogen Energy, Vol. 27, No. 11-12, 2002, pp. 1271-1281. doi:10.1016/S0360-3199(02)00111-8

[14]   F. Yoshino, H. Ikeda, H. Masukawa and H. Sakurai, “High Photobiological Hydrogen Production Activity at a Nostoc sp. PCC 7422 Uptake Hydrogenase-Deficient Mutant with High Nitrogenase Activity,” Marine Biotechnology, Vol. 9, No. 1, 2007, pp. 101-112. doi:10.1007/s10126-006-6035-3

[15]   R. Rippka, J. Deruelles, B. Waterbury, M. Herdman and R. Y. Stanier, “Generic Assignment, Strain Histories and Properties of Pure Cultures of Cyanobacteria,” Journal of General Microbiology, Vol. 11, No. 1, 1979, pp. 1-61. doi:10.1099/00221287-111-1-1

[16]   A. V. Mardanov, A. V. Beletsky, V. M. Gumerov, E. A. Karbysheva and L. E. Mikheeva, “The New Low-Copy Number Plasmid of Cyanobacterium Anabaena variabilis,” Genetika, Vol. 49, No. 8, 2013, pp. 921-929 (in Russian).

[17]   Y. Kanesaki, Y. Shiwa, N. Tajima, M. Suzuki, S. Watanabe, N. Sato, M. Ikeuchi and H. Yoshikawa, “Identification of Substrain-Specific Mutations by Massively Parallel Whole-Genome Resequencing of Synechocystis sp. PCC 6803,” DNA Research, Vol. 19, No. 1, 2012, pp. 67-79. doi:10.1093/dnares/dsr042

[18]   R. Wunschiers, M. Batur and P. Lindblad, “Presence and Expression of Hydrogenase Specific C-Terminal Endopeptidases in Cyanobacteria,” BMC Microbiology, Vol. 3, 2003, pp. 8-20. doi:10.1186/1471-2180-3-8

[19]   B. Fodor, G. Rakhely, A. Kovacs and K. L. Kovacs, “Transposon Mutagenesis in Purple Sulfur Photosynthetic Bacteria: Identification of hypF, Encoding a Protein Capable of Processing [NiFe] Hydrogenases in Alpha, Beta, and Gamma Subdivisions of the Proteobacteria,” Applied and Environmental Microbiology, Vol. 67, No. 6, 2001, pp. 2476-2483. doi:10.1128/AEM.67.6.2476-2483.2001

[20]   D. Hoffmann, K. Gutekunst, M. Klissenbauer, R. SchulzFriedrich and J. Appel, “Mutagenesis of Hydrogenase Accessory Genes of Synechocystis sp. PCC 6803. Additional Homologues of hypA and hypB are not Active in Hydrogenase Maturation,” FEBS Journal, Vol. 273, No. 19, 2006, pp. 4516-4527. doi:10.1111/j.1742-4658.2006.05460.x

[21]   M. Wakai, S. Davar, H. Masukawa and H. Sakurai, “Effects of Disruption of HypF Gene on Photobiological Hydrogen Production in Anabaena sp. PCC 7120,” Abstracts of 13th International Congress on Photosynthesis, Montréal, 28 August-3 september 2004, p. 769.

[22]   S. Petkun, R. Shi, Y. Li, A. Asinas, C. Munger, L. Zhang, M. Waclawek, B. Soboh, G. Sawers and M. Cygler, “Structure of Hydrogenase Maturation Protein HypF Reaction Intermediates Shows Two Active Sites,” Structure, Vol. 19, No. 12, 2011, pp. 1773-1783. doi:10.1016/j.str.2011.09.023

[23]   K. A. Harris, V. Jones, Y. Bilbille, M. A. Swairjo and P. F. Agris, “YrdC Exhibits Properties Expected of a Subunit for a tRNA Threonylcarbamoyl Transferase,” RNA, Vol. 17, No. 9, 2011, pp. 1678-1687. doi:10.1261/rna.2592411

[24]   S. Dai, C. Schwendtmayer, K. Johansson, S. Ramaswamy, P. Schurmann and H. Eklund, “How Does Light Regulate Chloroplast Enzymes? Structure—Function Studies of the Ferredoxin/Thioredoxin System,” Quarterly Reviews of Biophysics, Vol. 33, No. 1, 2000, pp. 67-108. doi:10.1017/S0033583500003607

[25]   M. Lindal and F. J. Florencio, “Thioredoxin-Linked Processes in Cyanobacteria Are as Numerous as in Chloroplasts, But Targets Are Different,” Proceedings of National Academy Sciences of USA, Vol. 100, No. 26, 2003, pp. 16107-16112. doi:10.1073/pnas.2534397100

[26]   H. Papen, T. Kentemich, T. Schmulling and H. Bothe, “Hydrogenase Activities in Cyanobacteria,” Biochemie, Vol. 68, No. 1, 1986, pp. 121-132. doi:10.1016/S0300-9084(86)81077-X

[27]   S. Watanabe, R. Matsumi, T. Arai, H. Atomi, T. Imanaka and K. Miki, “Crystal Structures of [NiFe] Hydrogenase Maturation Proteins HypC, HypD, and HypE: Insights into Cyanation Reaction by Thiol Redox Signaling,” Molecular Cell, Vol. 27, No. 1, 2007, pp. 29-40. doi:10.1016/j.molcel.2007.05.039