Back
 AJAC  Vol.4 No.8 , August 2013
Adsorptive Removal of Ni(II) from Water Using Alginate-Fixed Water Hyacinth: Effect of Organic Substances
Abstract: The potential of water hyacinth—Eichhornia crassipes biomass immobilized in calcium alginate for the adsorption of Ni(II) from water was studied using the Langmuir and Freundlich adsorption models. The equilibrium adsorption data were obtained at different initial Ni(II) concentrations = 0.05-2 mg/L, temperature = 30℃ ± 0.2℃, agitation rate = 150 rpm, equilibration time = 3 hr, biosorbent dose =4 g/L, and pH range = 4-7.4. Langmuir isotherms gave monolayer sorption capacities (qm) of 26.5, 44.3 and 53.0 mg/g for the removal of Ni(II) in the presence of methanol, without added organic substance, and in the presence of acetonitrile, respectively. These findings were also confirmed by the trend in the Freundlich isotherm parameter (1/n < 1). Interpretation of the sorption data in terms of the separation factor, SF, suggested that the removal of Ni(II) from water mainly occurred through a chemisorption mechanism. Desorption experiments to recover Ni(II) from the adsorbent showed that highest amounts of the metal could be removed from the adsorbent when previously adsorbed in the presence of 1-(2-Thiazolylazo)-2-naphtol (TAN) (>90%). The results from these studies indicated that E. crassipes fixed on calcium alginate beads is a viable metal enrichment media that can be used freely immersed in solution to achieve very high adsorption capacities and possible preconcentration of Ni(II) in aquatic environments.
Cite this paper: C. Mahamadi and B. Madocha, "Adsorptive Removal of Ni(II) from Water Using Alginate-Fixed Water Hyacinth: Effect of Organic Substances," American Journal of Analytical Chemistry, Vol. 4 No. 8, 2013, pp. 373-378. doi: 10.4236/ajac.2013.48047.
References

[1]   U. Farooq, J. A. Kozinski, M. A. Khan and M. Athar, “Biosorption of Heavy Metal Ions Using Wheat Based Biosorbent-A Review of Recent Literature,” Bioresource Technology, Vol. 101, No. 14, 2010, pp. 5043-5053. doi:10.1016/j.biortech.2010.02.030

[2]   N. Das, “Recovery of Precious Metals through Biosorption—A Review,” Hydrometallurgy, Vol. 103, No. 1-4, 2010, pp. 180-189. doi:10.1016/j.hydromet.2010.03.016

[3]   T. A. Davis, B. Volesky and A. Mucci, “A Review of the Biochemistry of Heavy Metal Biosorption by Brown Algae,” Water Research, Vol. 37, No. 18, 2003, pp. 4311-4330. doi:10.1016/S0043-1354(03)00293-8

[4]   G. Crini, “Recent Developments in Polysaccharide-Based Materials Used as Adsorbents in Wastewater Treatment,” Progress in Polymer Science, Vol. 30, No. 1, 2005, pp. 38-70. doi:10.1016/j.progpolymsci.2004.11.002

[5]   D. Kratochvil and B. Volesky, “Multicomponent Biosorption in Fixed Beds,” Water Research, Vol. 34, No. 12, 2000, pp. 3186-3196. doi:10.1016/S0043-1354(00)00083-X

[6]   B. Volesky, “Detoxification of Metal Bearing Effluents: Biosorption for the Next Century,” Hydrometallurgy, Vol. 59, No. 2-3, 2001, pp. 203-216. doi:10.1016/S0304-386X(00)00160-2

[7]   Z. Z. -C. Hu and M. Reeves, “Biosorption of Uranium by Pseudomonas aeruginosa Strain CSU Immobilized in a Novel Matrix,” Biotechnology Progress, Vol. 13, No. 1, 1997, pp. 60-70. doi:10.1021/bp9600849

[8]   L. Singh, R. P. Asalapuram, L. Ramnath and K. R. Gunaratna, “Effective Removal of Cu2+ Ions from Aqueous Medium Using Alginate as Biosorbent,” Ecological Engineering, Vol. 38, No. 1, 2012, pp. 119-124. doi:10.1016/j.ecoleng.2011.10.007

[9]   M. Sarkar and P. Majumdar, “Application of Response Surface Methodology for Optimization of Heavy Metal Biosorption Using Surfactant Modified Chitosan Bead,” Chemical Engineering Journal, Vol. 175, pp. 376-387. doi:10.1016/j.cej.2011.09.125

[10]   S. Benamer, M. Mahlous, D. Tahtat, A. Nacer-Khodja, M. Arabi, H. Lounici and N. Mameri, “Radiation Synthesis of Chitosan Beads Grafted with Acrylic Acid for Metal Ions Sorption,” Radiation Physics and Chemistry, Vol. 80, No. 12, pp. 1391-1397. doi:10.1016/j.radphyschem.2011.06.013

[11]   Y. Zhang, D. Kogelnig, C. Morgenbesser, A. Stojanovic, F. Jirsa, I. Lichtscheidl-Schultze, R. Krachler, Y. Li, K. Bernhard and B. K. Keppler, “Preparation and Characterization of Immobilized [A336][MTBA] in PVA—Alginate gel Beads as Novel Solid-Phase Extractants for an Efficient Recovery of Hg (II) from Aqueous Solutions,” Journal of Hazardous Materials, Vol. 196, pp. 201-209. doi:10.1016/j.jhazmat.2011.09.018

[12]   P. Xiangliang, W. Jianlong and Z. Daoyong, “Biosorption of Pb(II) by Pleurotus Ostreatus Immobilized in Calcium Alginate Gel,” Process Biochemistry, Vol. 40, No. 8, pp. 2799-2803. doi:10.1016/j.procbio.2004.12.007

[13]   C. Mahamadi and P. Zambara, “High Cu Removal from Water Using Water Hyacinth Fixed on Alginate,” Environmental Chemistry Letters, 2013, (in Press). doi:10.1007/s10311-013-0418-2

[14]   F. Beolchini, F. Pagnanelli, L. Toro and F. Veglio, “Biosorption of Copper by Sphaerotilus natans Immobilised in Polysulfone Matrix: Equilibrium and Kinetic Analysis,” Hydrometallurgy, Vol. 70, No. 1-3, pp. 101-112. doi:10.1016/S0304-386X(03)00049-5

[15]   I. A. H. Schneider, J. Rubio, M. Misra and R. W. Smith, “Eichhornia crassipes as Biosorbent for Heavy Metal Ions,” Minerals Engineering, Vol. 8, No. 9, 1995, pp. 979-988. doi:10.1016/0892-6875(95)00061-T

[16]   C. Mahamadi and T. Nharingo, “Modeling Kinetic and Equilibrium Properties of Cadmium Biosorption by River Green Alga and Hyacinth Weed,” Toxicological and Environmental Chemistry, Vol. 89, No. 2, 2007, pp. 297-305. doi:10.1080/02772240601010063

[17]   C. Mahamadi and T. Nharingo, “Competitive Adsorption of Pb2+, Cd2+ and Zn2+ Ions onto Eichhornia crassipes in Binary and Ternary Systems,” Bioresource Technology, Vol. 101, No. 3, 2010, pp. 859-864. doi:10.1016/j.biortech.2009.08.097

[18]   R. Laus and V. T. Tadeu de Fávere, “Competitive Adsorption of Cu(II) and Cd(II) Ions by Chitosan Crosslinked with Epichlorohydrin-Triphosphate,” Bioresource Technology, Vol. 102, No. 19, 2011, pp. 8769-8776. doi:10.1016/j.biortech.2011.07.057

[19]   C. Yan, G. Li, P. Xue, Q. Wei and Q. Li, “Competitive Effect of Cu(II) and Zn(II) on the Biosorption of Lead(II) by Myriophyllum spicatum,” Journal of Hazardous Materials, Vol. 179, No. 1-3, 2010, pp. 721-728. doi:10.1016/j.jhazmat.2010.03.061

[20]   T. Depci, A. R. Kul and Y. Onal, “Competitive Adsorption of Lead and Zinc from Aqueous Solution on Activated Carbon Prepared from Van Apple Pulp: Study in Single- and Multi-Solute Systems,” Chemical Engineering Journal, Vol. 200-202, 2012, pp. 224-236. doi:10.1016/j.cej.2012.06.077

 
 
Top