JSIP  Vol.4 No.3 , August 2013
Exploration and Cooperation Robotics on the Moon

Space robotics are the development of general purpose machines that is capable of surviving (for a time, at least) in the rigors of the space environment, and performing exploration, assembly, construction, maintenance, servicing. Space Robots can perform tasks less expensively or on an accelerated schedule, with less risk and occasionally with improved performance while humans doing the same tasks. The moon is the natural next step in the exploration of our own universe. Understanding moon better will help us understand our neighbors in the solar system. In this paper, a concept of exploration and cooperation robotics on the moon is discussed. The concept requires not only to extend the exploration mission on the moon surface but also to address a way to integrate the developed robotics with each other. Sharing the information between robots is one of a concept’s features to reduce lime and power consumption in the exploration process. Moreover, several challenges are discussed here, which prevent the concept from developing in outer space or on moon.

Cite this paper: M. Alfraheed and A. Al-Zaghameem, "Exploration and Cooperation Robotics on the Moon," Journal of Signal and Information Processing, Vol. 4 No. 3, 2013, pp. 253-258. doi: 10.4236/jsip.2013.43033.

[1]   B. Wilcox, R. Ambrose and V. Kumar, “Chapter 3— Space Robotics,” 2006. otics/report/03-Space.pdf

[2]   K. Yoshida, “Achievements in Space Robotics,” IEEE Robotics & Automation Magazine, Vol. 16, No. 4, 2009, pp. 20-28. doi:10.1109/MRA.2009.934818

[3]   G. Bones and C. Nerves, “Canadarm—The Background,” 2013. nnium/canadarm/canadarm_background.html

[4]   T. Tran, “NASA—Canadarm 2 and the Mobile Servicing System,” 2013. pages/station/structure/elem ents/mss.html

[5]   H. Nakanishi and K. Yoshida, “Impedance Control for Free-Flying Space Robots-Basic Equations and Applications,” 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, 9-15 October 2006, pp. 3137-3142.

[6]   T. Malik and S. Writer, “Orbital Express: Prototype Satellites Primed for In-Flight Service,” 2013.

[7]   P. K. Wettergreen, L. Pedersen, D. Kortenkamp, D. Wettergreen and I. Nourbakhsh, “A Survey of Space Robotics,” 2003.

[8]   ESA, “Rosetta at a Glance,” European Space Agency, 2013. ies/Space_Science/Rosetta/Roset ta_at_a_glance2

[9]   W. Bluethmann, R. Ambrose, M. Diftler, S. Askew, E. Huber, M. Goza, F. Rehnmark, C. Lovchik and D. Magruder, “Robonaut: A Robot Designed to Work with Humans in Space,” Autonomous Robots, Vol. 14, No. 2-3, 2003, pp. 179-197. doi:10.1023/A:1022231703061

[10]   M. A. Diftler, T. D. Ahlstrom, R. O. Ambrose, N. A. Radford, C. A. Joyce, N. De La Pena, A. H. Parsons and A. L. Noblitt, “Robonaut 2—Initial Activities On-Board the ISS,” 2012 IEEE Aerospace Conference, Big Sky, 3-10 March 2012, pp. 1-12. doi:10.1109/AERO.2012.6187268

[11]   R. Doyle, E. Dupuis, M. Oda, J.-C. Piedbeouf and G. Visentin, “Progress on AI, Robotics, and Automation in Space: A Report from i-SAIRAS 08,” IEEE Intelligent Systems, Vol. 24, No. 1, 2009, pp. 78-83. doi:10.1109/MIS.2009.16

[12]   “National Geographic Channel, Living on the Moon Clip 3,” 2013.

[13]   ESA, “Eurobot Ground Prototype,” European Space Agency, 2013. Human_Spaceflight/Research/ Eurobot_Ground_Prototype

[14]   J. Borland, “Mars Rover Dips, Slips into Tricky Territory,” Wired Science, 2007. wiredscience/2007/09/mars-rover-dips/

[15]   NASA, “Mars Exploration Program: NASA in 2018 ExoMars Rover,” 2013. http://mars.jpl.nasa. gov/programmissions/miss ions/future/exomarsrover2018/

[16]   “Mars Science Laboratory: Technology,” 2013.

[17]   NASA, “Robonaut,” 2013.

[18]   E. T. Baumgartner, R. G. Bonitz, J. P. Melko, L. R. Shiraishi, P. C. Leger and A. Trebi-Ollennu, “Mobile Manipulation for the Mars Exploration Rover—A Dexterous and Robust Instrument Positioning System,” IEEE Robotics & Automation Magazine, Vol. 13, No. 2, 2006, pp. 27-36. doi:10.1109/MRA.2006.1638013

[19]   S. Jin, J. Cho, X. D. Pham, K.-M. Lee, S.-K. Park, M. Kim and J. W. Jeon, “FPGA Design and Implementation of a Real-Time Stereo Vision System,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 20, No. 1, 2010, pp. 15-26.

[20]   “FPGA Stereo Vision Project,” 2013.

[21]   G. Reina, L. Ojeda, A. Milella and J. Borenstein, “Wheel Slippage and Sinkage Detection for Planetary Rovers,” IEEE/ASME Transactions on Mechatronics, Vol. 11, No. 2, 2006, pp. 185-195. doi:10.1109/TMECH.2006.871095

[22]   G. Reina, A. Milella and F. W. Panella, “Vision-Based Wheel Sinkage Estimation for Rough-Terrain Mobile Robots,” 15th International Conference on Mechatronics and Machine Vision in Practice, Auckland, 2-4 December 2008, pp. 75-80. doi:10.1109/MMVIP.2008.4749510

[23]   P.-Y. Cui, F.-Z. Yue and H.-T. Cui, “Stereo Vision Based Motion Estimation for Lunar Rover Navigation,” 2006 International Conference on Machine Learning and Cybernetics, Dalian, 13-16 August 2006, pp. 3847-3852. doi:10.1109/ICMLC.2006.258696

[24]   T. Fong, L. M. Hiatt, C. Kunz and M. Bugajska, “The Human-Robot Interaction Operating System,” Proceedings of the 1st ACM SIGCHI/SIGART Conference on Human-Robot Interaction, New York, 2006, pp. 41-48

[25]   L. B. Bridgwater, C. A. Ihrke, M. A. Diftler, M. E. Abdallah, N. A. Radford, J. M. Rogers, S. Yayathi, R. S. Askew and D. M. Linn, “The Robonaut 2 Hand-Designed to Do Work with Tools,” 2012 IEEE International Conference on Robotics and Automation, Saint Paul, 14-18 May 2012, pp. 3425-3430. doi:10.1109/ICRA.2012.6224772