Effect of Non-Uniform Basic Temperature Gradient on the Onset of Rayleigh-Bénard-Marangoni Electro-Convectionin a Micropolar Fluid

Show more

References

[1] J. R. A. Pearson, “On Convection Cells Induced by Sur face Tension,” Journal of Fluid Mechanics, Vol. 4, No. 5, 1958, pp. 489-500. doi:10.1017/S0022112058000616

[2] D. A. Nield, “Surface Tension and Buoyancy Effects in Cellular Convection,” ZAMM, Vol. 17, No. 1, 1966, pp. 131-139. doi:10.1007/BF01594092

[3] N. Rudraiah, V. Ramachandramurthy and O. P. Chandana, “Surface Tension Driven Convection Subjected to Rota tion and Non-Uniform Temperature Gradient,” Interna tional Journal of Heat and Mass Transfer, Vol. 28, No. 8, 1985, pp. 1621-1624. doi:10.1016/0017-9310(85)90264-9

[4] T. Maekawa and I. Tanasawa, “Effect of Magnetic Field and Buoyancy on Onset of Marangoni Convection,” In ternational Journal of Heat and Mass Transfer, Vol. 31, No. 2, 1988, pp. 285-293.
doi:10.1016/0017-9310(88)90011-7

[5] G. S. R. Sarma, “Marangoni Convection in a Fluid Layer under the Action of a Transverse Magnetic Field,” Space Research, Vol. 19, 1979, pp. 575-578.

[6] G. S. R. Sarma, “Marangoni Convection in a Liquid Lay er under the Simultaneous Action of a Transverse Mag netic Field and Rotation,” Advances in Space Research, Vol. 1, No. 5, 1981, pp. 55-58.
doi:10.1016/0273-1177(81)90151-4

[7] M. Takashima, “Surface Tension Driven Instability in a Horizontal Liquid Layer with a Deformable Free Surface Part I Steady Convection,” Journal of the Physical Soci ety of Japan, Vol. 50, No. 8, 1981, pp. 2745-2750.
doi:10.1143/JPSJ.50.2745

[8] S. K. Wilson, “The Effect of a Uniform Magnetic Field on the Onset of Steady Bénard-Marangoni Convection in a Layer of Conducting Fluid,” Journal of Engineering Mathematics, Vol. 27, No. 2, 1993, pp. 161-188.
doi:10.1007/BF00127480

[9] S. K. Wilson, “The Effect of a Uniform Magnetic Field on the Onset of Steady Marangoni Convection in a Layer of Conducting Fluid with a Prescribed Heat Flux at Its Lower Boundary,” Physics of Fluids, Vol. 6, No. 11, 1994, pp. 3591-3560. doi:10.1063/1.868417

[10] I. Hashim and S. K. Wilson, “The Onset of Bénard-Ma rangoni Convection in a Horizontal Layer of Fluid,” In ternational Journal of Engineering Science, Vol. 37, No. 5, 1999, pp. 643-662.
doi:10.1016/S0020-7225(98)00084-6

[11] R. J. Turnbull, “Electro Convective Instability with a Sta bilizing Temperature Gradient. I. Theory,” Physics of Fluids, Vol. 11, No. 12, 1968, pp. 2588-2596.
doi:10.1063/1.1691864

[12] R. J. Turnbull and R. J. Melcher, “Electrohydrodynamic Rayleigh-Taylor Bulk Instability,” Physics of Fluids, Vol. 12, No. 6, 1969, pp. 1160-1166. doi:10.1063/1.1692646

[13] M. Takashima and K. D. Aldridge, “The Stability of a Horizontal Layer of Dielectric Fluid under the Simulta neous Action of a Vertical dc Electric Field and a Vertical Temperature Gradient,” The Quarterly Journal of Mecha nics and Applied Mathematics, Vol. 29, No. 1, 1976, pp. 71-87.

[14] P. J. Stiles, “Electro Thermal Convection in Dielectric Li quids,” Chemical Physics Letters, Vol. 179, No. 3, 1991, pp. 311-315. doi:10.1016/0009-2614(91)87043-B

[15] P. J. Stiles, F. Lin and P. J. Blennerhassett, “Convective Heat Transfer through Polarized Dielectric Liquids,” Phy sics Fluids, Vol. 5, No. 12, 1993, pp. 3273-3279.
doi:10.1063/1.858684

[16] P. G. Siddeshwar, “Oscillatory Convection in Viscoelas tic, Ferromagnetic/Dielectric Liquids,” International Jour nal of Modern Physics B, Vol. 16, No. 17-18, 2002, pp. 2629-2635. doi:10.1142/S0217979202012761

[17] P. G. Siddeshwar and A. Abraham, “Effect of Time-Peri odic Boundary Temperatures/Body Force on Rayleigh Bénard Convection in a Ferromagnetic Fluid,” Acta Me chanica, Vol. 161, No. 3-4, 2003, pp. 131-150.

[18] P. G. Siddeshwar and A. Abraham, “Rayleigh-Bénard Con vection in a Dielectric Liquid: Imposed Time-Periodic Boundarytemperatures,” Chamchuri Journal of Mathema tics, Vol. 1, No. 2, 2009, pp. 105-121.

[19] P. G. Siddeshwar and A. T. Y. Chan, “Ferrohydrodyna mic and Electrohydrodynamics Instability in Viscoelastic Liquids: An Analogy,” Proceedings 4th International Conference on Fluid Mechanics, Dalian, 20-30 July 2004, pp. 167-172.

[20] I. S. Shivakumara, M. S. Nagashree and K. Hemalatha, “Electrothermoconvective Instability in a Heat Generat ing Dielectric Fluid Layer,” International Communica tions in Heat and Mass Transfer, Vol. 34, No. 9-10, 2007, pp. 1041-1047.
doi:10.1016/j.icheatmasstransfer.2007.05.006

[21] N. Rudraiah, B. M. Shankar and C.-O. Ng, “Electrohy drodynamic Stability of Couple Stress Fluid Flow in a Channel Occupied by a Porous Medium,” Special Topics & Reviews in Porous Media—An International Journal, Vol. 2, No. 1, 2011, pp. 11-22.

[22] P. G. Siddeshwar and D. Radhakrishna, “Linear and Nonlinear Electroconvection under AC Electric Field,” Communications in Nonlinear Science and Numerical Simulation, Vol. 17, No. 7, 2012, pp. 2883-2895.
doi:10.1016/j.cnsns.2011.11.009

[23] A. C. Eringen, “Theory of Micropolar Fluids,” International Journal of Engineering Science, Vol. 16, No. 1, 1966, p. 1.

[24] B. Datta and V. U. K. Sastry, “Thermal Instability of a Horizontal Layer of Micropolar Fluid Heated from Be low,” International Journal of Engineering Science, Vol. 14, No. 7, 1976, pp. 631-637.
doi:10.1016/0020-7225(76)90005-7

[25] P. G. Siddheshwar and S. Pranesh, “Magnetoconvection in a Micropolar Fluid,” International Journal of Engi neering Science, USA, Vol. 36, No. 10, 1998, pp. 1173 1181. doi:10.1016/S0020-7225(98)00013-5

[26] P. G. Siddheshwar and S. Pranesh, “Magnetoconvection in Fluids with Suspended Particles under 1 g and ug,” In ternational Journal of Aerospace Science and Technology, France, Vol. 6, No. 2, 2001, pp. 105-114.
doi:10.1016/S1270-9638(01)01144-0

[27] P. G. Siddheshwar and S. Pranesh, “Suction-Injection Effects on the Onset of Rayleigh-Bénard-Marangoni Con vection in a Fluid with Suspended Particles,” Acta Me chanica, Germany, Vol. 152, No. 1-4, 2001, pp. 241-252.
doi:10.1007/BF01176958

[28] S. Pranesh and R. Baby, “Effect of Non-Uniform Tem perature Gradient on the Onset of Rayleigh-Bénard Elec tro Convection in a Micropolar Fluid,” Applied Mathe matics, Vol. 3, No. 5, 2012, pp. 442-450.
doi:10.4236/am.2012.35067

[29] S. Pranesh and A. Kumar, “Effect of Non-Uniform Basic Concentration Gradient on the Onset of Double-Diffusive Convection in Micropolar Fluid,” Applied Mathematics, Vol. 3, No. 5, 2012, pp. 417-424.
doi:10.4236/am.2012.35064