OJPP  Vol.3 No.3 , August 2013
A Deep Unity between Scientific Disciplines
Abstract: Are scientific disciplines really different? This question often crystallizes into the old debate: Are Physics and Biology different? If Physics and Biology worked on highly different entities (objects), or if they had highly different methods, it would be straightforward to close the debate by a negative answer. However, if we cannot identify any differences, we should explore more deeply the status of the laws found in Physics and questioned in Biology. By slightly modifying the definition of what is a law, I argue here that both disciplines possess some laws exhibiting various “degrees of confirmation”. I finally propose explanations for why P and B give the illusion differing radically, although they both belong to the same continuum of a unified scientific domain.
Cite this paper: Gaucherel, C. (2013). A Deep Unity between Scientific Disciplines. Open Journal of Philosophy, 3, 413-421. doi: 10.4236/ojpp.2013.33061.

[1]   Balian, R. (1991). From microphysics to macrophysics: Methods and applications of statistical physics. Berlin: Springer Verlag.

[2]   Barabasi, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science in Context, 286, 509-512

[3]   Beaulieu, J.-P., Bennett, D. P., Fouqué, P., Williams, A., Dominik, M. et al. (2006). Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing. Nature, 439, 437-440. doi:10.1038/nature04441

[4]   Benhamou, S. (2007). How many animals really do the Levy walk? Ecology, 88, 1962-1969. doi:10.1890/06-1769.1

[5]   Carnap, R. (1974). An introduction to the philosophy of science. Mineola: Dover science book.

[6]   Cartwright, N. (1983). How the laws of physics lie. Oxford: Oxford University Press.

[7]   Chase, J. M. (2005). Towards a really unified theory for metacommuni ties. Functional Ecology, 19, 182-186.

[8]   D’Souza, R. M., Borgs, C., Chayes, J. T., Berger, N., & Kleinberg, R. D. (2007). Emergence of tempered preferential attachment from op timization. Proceedings of the National Academy of Sciences of the United States of America, 104, 6112-6117. doi:10.1073/pnas.0606779104

[9]   Evans, D. J., Cohen, E. G. D., & Morriss, G. P. (1993). Probability of second law violations in shearing steady states. Physical Review Let ters, 71, 2401-2404. doi:10.1103/PhysRevLett.71.2401

[10]   Fisher, R. A. (1966). The design of experiments (8th ed.). Edinburgh: Hafner.

[11]   Frank, S. A. (2009). The common patterns of nature. Journal of Evolu tionnary Biology, 22, 1563-1585. doi:10.1111/j.1420-9101.2009.01775.x

[12]   Gardner, R. H., Milne, B. T., Turner, M. G., & O’Neill, R. V. (1987). Neutral models for the analysis of broad-scale pattern. Landscape Ecology, 1, 19-28. doi:10.1007/BF02275262

[13]   Gaucherel, C. (2011). Self-organization of patchy landscapes: Hidden optimization of ecological processes. Ecosystem & Ecography, 1.

[14]   Gaucherel, C., Fleury, D., Auclair, A., & Dreyfus, P. (2006). Neutral models for patchy landscapes. Ecological Modelling, 197, 159-170. doi:10.1016/j.ecolmodel.2006.02.044

[15]   Gaucherel, C., & Jensen, H. J. (2012). Origins of evolution: Non ac quired characters dominates over acquired characters in changing environment. Journal of Theoretical Biology, in Press. doi:10.1016/j.jtbi.2012.02.028

[16]   Gould, S. J. (1989). Wonderful life: The burgess shale and the nature of history. New York.

[17]   Halley, J. M., Hartley, S., Kallimanis, A. S., Kunin, W. E., Lennon, J. J., & Sgardelis, S. P. (2004). Uses and abuses of fractal methodology in ecology. Ecology Letters, 7, 254-271. doi:10.1111/j.1461-0248.2004.00568.x

[18]   Harte, J. (2002). Toward a synthesis of the Newtonian and Darwinian worldviews. Physics Today, 29-34. doi:10.1063/1.1522164

[19]   Hubbell, S. (2001). The unified neutral theory of biodiversity and bio geography. Princeton, NJ: Princeton University Press.

[20]   Kauffman, S. (1993). Origins of order: Self-organization and selection in evolution. Technical monograph. Oxford: Oxford University Press.

[21]   Keller, E. F. (2007). A clash of two cultures. Nature, 445, 603-603

[22]   Kimura, M. (1983). The neutral theory of molecular evolution. Cam bridge: Cambridge University Press. doi:10.1017/CBO9780511623486

[23]   Lovelock, J. (2003). The living Earth. Nature, 426, 769-770. doi:10.1038/426769a

[24]   Mayr, E. (2004). What makes biology unique? Cambridge: Cambridge University Press. doi:10.1017/CBO9780511617188

[25]   Morris, S. C. (2010 ). Evolution: Like any other science it is predictable. Philosophical Transactions of the Royal Society B, 365, 133-145. doi:10.1098/rstb.2009.0154

[26]   Nicolis, G., & Prigogine, I. (1977). Self organization in nonequilibrium systems. New York.

[27]   Nitecki, M. H., & Hoffman, A. (1987). Neutral models in biology. Ox ford: Oxford University Press.

[28]   Pesic, P. (2002). Seeing double: Shared identities in physics, philoso phy, and literature. Cambridge: The MIT Press,

[29]   Pombo, O., Torres, J. M., Symons, J., & Rahman, S. (2012). Special sciences and the unity of science, vol. 24. Logic, Epistemology, and the Unity of Science.

[30]   Por, F. D. (2006). The actuality of Lamarck: Towards the bicentenary of his Philosophie Zoologique. Integrative Zoology, 1, 48-52.

[31]   Scanlon, T. M., Caylor, K. K., Levin, S. A., & Rodriguez-Iturbe, I. (2007). Positive feedbacks promote power-law clustering of Kalahari vegetation. Nature, 449, U209-U204. doi:10.1038/nature06060

[32]   Schrodinger, E. (1945). What is life? The physical aspect of the living cell and mind and matter. Cambridge: Cambridge University Press.

[33]   Tegmark, M. (2003). Parallel universes. Scientific American, 40-51. doi:10.1038/scientificamerican0503-40

[34]   Trepl, L., & Voigt, A. (2011). The classical holism-reductionism debate in ecology. In A. Schwarz, & K. Jax (Eds.), Ecology revisited. Reflecting on concepts, advancing science (pp. 45-83). Berlin: Springer. doi:10.1007/978-90-481-9744-6

[35]   Viswanathan, G. M., Buldyrev, S. V., Havlin, S., da Luz, M. G. E., Raposo, E. P., & Stanley, H. E. (1999). Optimizing the success of random searches. Nature, 401, 911-914. doi:10.1038/44831