JBiSE  Vol.3 No.12 , December 2010
Different architectures of collagen fibrils enforce different fibrillogenesis mechanisms
Author(s) Mario Raspanti
ABSTRACT
According to current knowledge on collagen fibril-logenesis, collagen fibrils are formed by a cooperative process involving lateral fusion of small protofibrils. Almost all the experimental research, however, was carried out on tendon collagen, whose fibrils are characterized by approximately straight subfibrils. By contrast, in most tissues the collagen fibril sub-units follow a helical course in which geometrical constraints prevent lateral fusions, thereby implying a different mechanism where collagen fibrils grow by addition of individual microfibrils rather than by lateral fusion of pre-assembled subfibrils. The proc-ess at the origin of these fibrils may provide a simple, automatic explanation for the remarkable uniformity in fibrils size observed in most tissues without re-quiring the intervention of unknown mechanisms of diameter control. Other mechanisms of growth con-trol remain indispensable to terminate the fibril-logenesis process in tendons and ligaments.

Cite this paper
nullRaspanti, M. (2010) Different architectures of collagen fibrils enforce different fibrillogenesis mechanisms. Journal of Biomedical Science and Engineering, 3, 1169-1174. doi: 10.4236/jbise.2010.312152.
References
[1]   Ottani, V., Martini, D., Franchi, M., Ruggeri, A. and Raspanti, M. (2002) Hierarchical structures in fibrillar collagens. Micron,33, 587-596.

[2]   Parry, D.A.D. and Craig, A.S. (1984) Growth and development of collagen fibrils in connective tissue. In: Ruggeri, A. and Motta, P.M., Eds., Ultrastructure of the Connective Tissue Matrix, Martinus Nijhoff, Hague, 36-64.

[3]   Ottani, V., Raspanti, M. and Ruggeri, A. (2001) Collagen structure and functional implications. Micron, 32, 251–260.

[4]   Birk, D.E., Zycband, E.I., Woodruff, S., Winkelmann, D.A. and Trelstad, R.L. (1997) Collagen fibrillogenesis in situ: fibril segments become long fibrils as the developing tendons matures. Developmental Dynamics, 208, 291-298.

[5]   Chanut-Delalande, H., Fichard, A., Bernocco, S., Garrone, R., Hulmes, D.J.S. and Ruggiero, F. (2001) Control of heterotypic fibril formation by collagen V is determined by chain stoichiometry. Journal of Biological Chemistry, 276, 24352-24359.

[6]   Bornstein, P. (2002) The NH(2)-terminal propeptides of fibrillar collagens: highly conserved domains with poorly understood functions. Matrix Biology, 21, 217-226.

[7]   Eyre, D.R., Weis, M.A. and Wu, J.J. (2008) “Advances in collagen cross-link analysis. Methods, 45, 65-74.

[8]   Svensson, L., Aszodi, A., Heinegard, D., Hunziker, E.B., Reinholt, F.P., Fassler, R. and Oldberg, A. (2002) Cartilage oligomeric matrix proteindeficient mice have normal skeletal development. Molecular and Cellular Biology, 22, 4366-4371.

[9]   Danielson, K.G., Baribault, H., Holmes, D.F., Graham, H., Kadler, K.E. and Iozzo, R. (1997) Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. Journal of Cell Biology, 136, 729-743.

[10]   Svensson, L., Aszodi, A., Reinholt, F.P., Fassler, R., Heinegard, D. and Oldberg, A. (1999) Fibromodulin-null mice have abnormal collagen fibrils, tissue organization, and altered lumican deposition in tendon. Journal of Biological Chemistry, 274, 9636-9647.

[11]   Chakravarti, S., Petroll, W.M., Hassell, J.R., Jester, J.V., Lass, J.H., Paul, J. and Birk, D.E. (2000) Corneal opacity in lumican-null mice: defects in collagen fibril structure and packing in the posterior stroma. Investigative Oph-thalmology and Visual Science, 41, 3365-3373.

[12]   Schonherr, E., Witsch-Prehm, P., Harrach, B., Robenek, H., Rauterberg, J. and Kresse, H. (1995) Interaction of biglycan with type I collagen. Journal of Biological Chemistry, 270, 2776-2783.

[13]   Mao, J.R., Taylor, G., Dean, W.B., Wagner, D.R., Afzal, V., Lotz, J.C., Rubin, E.M. and Bristow, J. (2002) Tenas-cin-X deficiency mimics Ehlers-Danlos syndrome in mice through alteration of collagen deposition. Nature Genetics, 30, 421-425.

[14]   Kvist, A.J., Johnson, A.E., M?rgelin, M., Gustafsson, E., Bengtsson, E., Lindblom, K., Aszodi, A., Fassler, R., Sa-saki, T. and Timpl, R. (2006) Chondroitin sulfate perle-can enhances collagen fibril formation. Implications for perlecan chondrodysplasias. Journal of Biological Chemistry, 281, 33127-33139.

[15]   Wiberg, C., Klatt, A.R., Wagener, R., Paulsson, M., Bateman, J.F., Heineg?rd, D. and M?rgelin, M. (2003) Complexes of matrilin-1 and biglycan or decorin connect collagen VI microfibrils to both collagen II and aggrecan. Journal of Biological Chemistry, 278, 37698-37704.

[16]   Bornstein, P., Kyriakides, T.R., Yang, Z., Armstrong, L.C. and Birk, D.E. (2000) Thrombospondin 2 modulates collagen fibrillogenesis and angiogenesis. Journal of Investigative Dermatology, 5, 61-66.

[17]   Ruggeri, A., Benazzo, F. and Reale, E. (1979) Collagen fibrils with straight and helicoidal microfibrils: a freeze-fracture and thin section study. Journal of Ultrastructure Re-search, 68, 101-108.

[18]   Reale, E., Benazzo, F. and Ruggeri, A. (1989) Differences in the microfibrillar arrangement of collagen fibrils. Distribution and possible significance. Journal of Submi-croscopic Cytology, 13, 135-143.

[19]   Raspanti, M., Ottani, V. and Ruggeri, A. (1989) Different ar-chitectures of the collagen fibril: morphological aspects and functional implications. International Journal of Biological Macromolecules, 11, 367-371.

[20]   Birk, D.E. and Mayne, R. (1997) Localization of collagen types I, III and V during tendon development. Changes in collagen types I and III are correlated with changes in fibril diameter. European Journal of Cell Biology, 72, 352-361.

[21]   Raspanti, M., Viola, M., Sonaggere, M., Tira, M.E. and Tenni, R. (2007) Collagen fibril structure is affected by collagen concentration and decorin. Biomacromolecules, 8, 2087-2091.

[22]   Smith, J.W. (1968) Molecular pattern in native collagen. Nature, 219, 157-158.

[23]   Holmes, D.F., Gilpin, C.J., Baldock, C., Ziese, U., Koster, A.J. and Kadler, K.E. (2001) Corneal collagen fibril structure in three dimensions: Structural insights into fibri1l assembly, mechanical properties, and tissue organization. Proceedings of the National Academy of Science U.S.A., 98, 7307-7312.

[24]   Cameron, G.J., Alberts, I.L., Laing, J.H. and Wess, T.J. (2002) Structure of Type I and Type III heterotypic collagen fibrils: An X-ray diffraction study. Journal of Structural Biology, 137, 15-22.

[25]   Marchini, M., Morocutti, M., Ruggeri, A., Koch, M.H.J., Bigi, A. and Roveri, N. (1986) Differences in the fibril structure of corneal and tendon collagen. An electron microscopy and X-ray diffraction investigation. Connective Tissue Research, 15, 269-281.

[26]   Mechanic, G.L., Katz, E.P., Henmi, M., Noyes, C. and Yamauchi, M. (1987) Locus of a histidine-based, stable trifunctional, helix to helix collagen cross-link: stereospecific structure of type I skin fibrils. Biochemistry, 26, 3500-3509.

[27]   Yamamoto, S., Hashizume, H., Hitomi, J., Shigeno, M., Sawaguchi, S., Abe, H. and Ushiki, T. (2002) The subfibrillar arrangement of corneal and scleral collagen fibrils as revealed by scanning electron and atomic force mi-croscopy. Archives of Histology and Cytology, 63, 127-135.

[28]   Birk, D.E., Fitch, J.M., Babiarz, J.P., Doane, K.J. and Linsenmayer, T.F. (1990) Collagen fibrillogenesis in vitro: interaction of types I and V collagen regulates fibril di-ameter. Journal of Cell Science, 95, 649-657.

[29]   Wenstrup, R.J., Florer, J.B., Brunskill, E.W., Bell, S.M., Chervoneva, I. and Birk, D.E. (2004) Type V collagen controls the initiation of collagen fibril assembly. Journal of Biological Chemistry, 279, 53331-53337.

 
 
Top