MSA  Vol.4 No.8 , August 2013
Design and Implementation Challenges of Microelectrode Arrays: A Review
ABSTRACT

The emerging field of neuroprosthetics is focused on design and implementation of neural prostheses to restore some of the lost neural functions. Remarkable progress has been reported at most bioelectronic levels—particularly the various brain-machine interfaces (BMIs)—but the electrode-tissue contacts (ETCs) remain one of the major obstacles. The success of these BMIs relies on electrodes which are in contact with the neural tissue. Biological response to chronic implantation of Microelectrode arrays (MEAs) is an essential factor in determining a successful electrode design. By altering the material compositions and geometries of the arrays, fabrication techniques of MEAs insuring these ETCs try to obtain consistent recording signals from small groups of neurons without losing microstimulation capabilities, while maintaining low-impedance pathways for charge injection, high-charge transfer, and high-spatial resolution in recent years. So far, none of these attempts have led to a major breakthrough. Clearly, much work still needs to be done to accept a standard model of MEAs for clinical purposes. In this paper, we review different microfabrication techniques of MEAs with their advantages and drawbacks, and comment on various coating materials to enhance electrode performance. Then, we propose high-density, three-dimensional (3D), silicon-based MEAs using micromachining methods. The geometries that will be used include arrays of penetrating variable-height probes.


Cite this paper
B. Ghane-Motlagh and M. Sawan, "Design and Implementation Challenges of Microelectrode Arrays: A Review," Materials Sciences and Applications, Vol. 4 No. 8, 2013, pp. 483-495. doi: 10.4236/msa.2013.48059.
References
[1]   [1] R. A. Normann, “Technology Insight: Future Neuroprosthetic Therapies for Disorders of the Nervous System,” Nature Clinical Practice Neurology, Vol. 3, No. 8, 2007, pp. 444-452. doi:10.1038/ncpneuro0556

[2]   E. Patrick, “Design, Fabrication, and Characterization of Microelectrodes for Brain-machine Interfaces,” University of Florida, Gainesville, 2010.

[3]   J. W. Judy, “Microelectrode Technologies for Neuroengineered Systems,” Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Cancun, 17-21 September 2003, pp. 3806-3809.

[4]   E. W. Keefer, B. R. Botterman, M. I. Romero, A. F. Rossi and G. W. Gross, “Carbon Nanotube Coating Improves Neuronal Recordings,” Nature Nanotechnology, Vol. 3, No. 7, 2008, pp. 434-439. doi:10.1038/nnano.2008.174

[5]   Y. F. Rui, J. Q. Liu, B. Yang, K. Y. Li and C. S. Yang, “Parylene-Based Implantable Platinum-Black Coated Wire Microelectrode for Orbicularis Oculi Muscle Electrical Stimulation,” Biomedical Microdevices, Vol. 14, No. 2, 2012, pp. 367-373. doi:10.1007/s10544-011-9613-8

[6]   K. C. Cheung, “Implantable Microscale Neural Interfaces,” Biomedical Microdevices, Vol. 9, No. 6, 2007, pp. 923-938. doi:10.1007/s10544-006-9045-z

[7]   F. Strumwasser, “Long-Term Recording from Single Neurons in Brain of Unrestrained Mammals,” Science, Vol. 127, No. 3296, 1958, pp. 469-470. doi:10.1126/science.127.3296.469

[8]   K. L. Drake, K. D. Wise, J. Farraye, D. J. Anderson and S. L. BeMent, “Performance of Planar Multisite Microprobes in Recording Extracellular Single-Unit Intracortical Activity,” IEEE Transactions on Bio-Medical Engineering, Vol. 35, No. 9, 1988, pp. 719-732. doi:10.1109/10.7273

[9]   P. K. Campbell, K. E. Jones, R. J. Huber, K. W. Horch and R. A. Normann, “A Silicon-Based, Three-Dimensional Neural Interface: Manufacturing Processes for an Intracortical Electrode Array,” IEEE Transactions on BioMedical Engineering, Vol. 38, No. 8, 1991, pp. 758-768. doi:10.1109/10.83588

[10]   T. A. Fofonoff, S. M. Martel, N. G. Hatsopoulos, J. P. Donoghue and I. W. Hunter, “Microelectrode Array Fabrication by Electrical Discharge Machining and Chemical Etching,” IEEE Transactions on Bio-Medical Engineering, Vol. 51, No. 6, 2004, pp. 890-895. doi:10.1109/TBME.2004.826679

[11]   A. E. Ayoub, B. Gosselin and M. Sawan, “A Microsystem Integration Platform Dedicated to Build Multi-ChipNeural Interfaces,” Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, 23-26 August 2007, pp. 6605-6608.

[12]   J. Subbaroyan, D. C. Martin and D. R. Kipke, “A FiniteElement Model of the Mechanical Effects of Implantable Microelectrodes in the Cerebral Cortex,” Journal of Neural Engineering, Vol. 2, No. 4, 2005, pp. 103-113. doi:10.1088/1741-2560/2/4/006

[13]   M. P. Ward, P. Rajdev, C. Ellison and P. P. Irazoqui, “Toward a Comparison of Microelectrodes for Acute and Chronic Recordings,” Brain Research, Vol. 1282, 2009, pp. 183-200. doi:10.1016/j.brainres.2009.05.052

[14]   R. A. Green, “Unauthorised Development and Seismic Hazard Vulnerability: A Study of Squatters and Engineers in Istanbul, Turkey,” Disasters, Vol. 32, No. 3, 2008, pp. 358-376. doi:10.1111/j.1467-7717.2008.01044.x

[15]   M. Verzeano and K. Negishi, “Neuronal Activity in Cortical and Thalamic Networks,” The Journal of General Physiology, Vol. 43, No. 6, 1960, pp. 177-195. doi:10.1085/jgp.43.6.177

[16]   B. Franklin, “An Account of the Effects of Electricity in Paralytic Cases. In a Letter to John Pringle, MDFRS from Benjamin Franklin, Esq; FRS,” Philosophical Transactions (1683-1775), Vol. 50, 1757, pp. 481-483.

[17]   G. E. Loeb, R. A. Peck and J. Martyniuk, “Toward the Ultimate Metal Microelectrode,” Journal of Neuroscience Methods, Vol. 63, No. 1, 1995, pp. 175-183. doi:10.1016/0165-0270(95)00107-7

[18]   D. A. Robinson, “The Electrical Properties of Metal Microelectrodes,” Proceedings of the IEEE, Vol. 56, No. 6, 1968, pp. 1065-1071. doi:10.1109/PROC.1968.6458

[19]   D. H. Hubel, “Tungsten Microelectrode for Recording from Single Units,” Science, Vol. 125, No. 3247, 1957, pp. 549-550. doi:10.1126/science.125.3247.549

[20]   R. F. Thompson and M. M. Patterson, “Bioelectric Recording Techniques,” Academic Press, Waltham, 1974.

[21]   J. K. Chapin, “Using Multi-Neuron Population Recordings for Neural Prosthetics,” Nature Neuroscience, Vol. 7, No. 5, 2004, pp. 452-455. doi:10.1038/nn1234

[22]   G. W. Gross, W. Y. Wen and J. W. Lin, “Transparent Indium-Tin Oxide Electrode Patterns for Extracellular, Multisite Recording in Neuronal Cultures,” Journal of Neuroscience Methods, Vol. 15, No. 3, 1985, pp. 243-252. doi:10.1016/0165-0270(85)90105-0

[23]   R. A. Green, C. M. Williams, N. H. Lovell and L. A. PooleWarren, “Novel Neural Interface for Implant Electrodes: Improving Electroactivity of Polypyrrole through MWNT Incorporation,” Journal of Materials Science. Materials in Medicine, Vol. 19, No. 4, 2008, pp. 1625-1629. doi:10.1007/s10856-008-3376-7

[24]   K. D. Wise, J. B. Angell and A. Starr, “An IntegratedCircuit Approach to Extracellular Microelectrodes,” IEEE Transactions on Biomedical Engineering, Vol. 17, No. 3, 1970, pp. 238-247. doi:10.1109/TBME.1970.4502738

[25]   K. Wise and J. Angell, “A Microprobe with Integrated Amplifiers for Neurophysiology,” IEEE International Solid-State Circuits Conference. Digest of Technical Papers, Philadelphia, 17-19 February 1971, pp. 100-101.

[26]   G. S. Brindley and W. S. Lewin, “The Sensations Produced by Electrical Stimulation of the Visual Cortex,” The Journal of Physiology, Vol. 196, No. 2, 1968, pp. 479-493.

[27]   W. H. Dobelle, M. G. Mladejovsky and J. P. Girvin, “Artifical Vision for the Blind: Electrical Stimulation of Visual Cortex Offers Hope for a Functional Prosthesis,” Science, Vol. 183, No. 4123, 1974, pp. 440-444. doi:10.1126/science.183.4123.440

[28]   R. J. Vetter, J. C. Williams, J. F. Hetke, E. A. Nunamaker and D. R. Kipke, “Chronic Neural Recording Using Silicon-Substrate Microelectrode Arrays Implanted in Cerebral Cortex,” IEEE Transactions on Bio-Medical Engineering, Vol. 51, No. 6, 2004, pp. 896-904. doi:10.1109/TBME.2004.826680

[29]   K. D. Wise, A. M. Sodagar, Y. Yao, M. N. Gulari, G. E. Perlin and K. Najafi, “Microelectrodes, Microelectronics, and Implantable Neural Microsystems,” Proceedings of the IEEE, Vol. 96, No. 7, 2008, pp. 1184-1202. doi:10.1109/JPROC.2008.922564

[30]   K. D. Wise, D. J. Anderson, J. F. Hetke, D. R. Kipke and K. Najafi, “Wireless Implantable Microsystems: HighDensity Electronic Interfaces to the Nervous System,” Proceedings of the IEEE, Vol. 92, No. 1, 2004, pp. 76-97. doi:10.1109/JPROC.2003.820544

[31]   M. R. Abidian and D. C. Martin, “Experimental and Theoretical Characterization of implantable Neural Microelectrodes Modified with Conducting Polymer Nanotubes,” Biomaterials, Vol. 29, No. 9, 2008, pp. 1273-1283. doi:10.1016/j.biomaterials.2007.11.022

[32]   T. Gabay, M. Ben-David, I. Kalifa, R. Sorkin, Z. R. Abrams, E. Ben-Jacob and Y. Hanein, “Electro-Chemical and Biological Properties of Carbon Nanotube Based MultiElectrode Arrays,” Nanotechnology, Vol. 18, No. 3, 2007, Article ID: 035201. doi:10.1088/0957-4484/18/3/035201

[33]   S. M. E. Merriam, “A Three-Dimensional Bidirectional Interface for Neural Mapping Studies,” Solid State Electronics Lab, University of Michigan, Michigan, 2010.

[34]   J. P. Seymour, N. B. Langhals, D. J. Anderson and D. R. Kipke, “Novel Multi-Sided, Microelectrode Arrays for Implantable Neural Applications,” Biomedical Microdevices, Vol. 13, No. 3, 2011, pp. 441-451. doi:10.1007/s10544-011-9512-z

[35]   S. F. Ronner and B. G. Lee, “Excitation of Visual Cortex Neurons by Local Intracortical Microstimulation,” Experimental Neurology, Vol. 81, No. 2, 1983, pp. 376-395. doi:10.1016/0014-4886(83)90270-4

[36]   R. A. Normann, E. M. Maynard, P. J. Rousche and D. J. Warren, “A Neural Interface for a Cortical Vision Prosthesis,” Vision Research, Vol. 39, No. 15, 1999, pp. 2577-2587. doi:10.1016/S0042-6989(99)00040-1

[37]   R. Bhandari, S. Negi and F. Solzbacher, “Wafer-Scale Fabrication of Penetrating Neural Microelectrode Arrays,” Biomedical Microdevices, Vol. 12, No. 5, 2010, pp. 797-807. doi:10.1007/s10544-010-9434-1

[38]   S. F. Cogan, P. R. Troyk, J. Ehrlich and T. D. Plante, “In Vitro Comparison of the Charge-Injection Limits of Activated Iridium Oxide (AIROF) and Platinum-Iridium Microelectrodes,” IEEE Transactions on Biomedical Engineering, Vol. 52, No. 9, 2005, pp. 1612-1614. doi:10.1109/TBME.2005.851503

[39]   J. D. Weiland, D. J. Anderson and M. S. Humayun, “In Vitro Electrical Properties for Iridium Oxide Versus Titanium Nitride Stimulating Electrodes,” IEEE Transactions on Biomedical Engineering, Vol. 49, No. 12, 2002, pp. 1574-1579. doi:10.1109/TBME.2002.805487

[40]   J. Selvakumaran, J. L. Keddie, D. J. Ewins and M. P. Hughes, “Protein Adsorption on Materials for Recording Sites on Implantable Microelectrodes,” Journal of Materials Science. Materials in Medicine, Vol. 19, No. 1, 2008, pp. 143-151.

[41]   S. Negi, R. Bhandari, L. Rieth and F. Solzbacher, “In Vitro Comparison of Sputtered Iridium Oxide and Platinum-Coated Neural Implantable Microelectrode Arrays,” Biomedical Materials, Vol. 5, No. 1, 2010, Article ID: 015007. doi:10.1088/1748-6041/5/1/015007

[42]   J. B. Kirkpatrick, M. L. Higgins, J. H. Lucas and G. W. Gross, “In Vitro Simulation of Neural Trauma by Laser,” Journal of Neuropathology and Experimental Neurology, Vol. 44, No. 3, 1985, pp. 268-284. doi:10.1097/00005072-198505000-00005

[43]   K. C. Cheung, P. Renaud, H. Tanila and K. Djupsund, “Flexible Polyimide Microelectrode Array for in Vivo Recordings and Current Source Density Analysis,” Biosensors & Bioelectronics, Vol. 22, No. 8, 2007, pp. 1783-1790. doi:10.1016/j.bios.2006.08.035

[44]   C. Metallo, R. D. White and B. A. Trimmer, “Flexible Parylene-Based Microelectrode Arrays for High Resolution EMG Recordings in Freely Moving Small Animals,” Journal of Neuroscience Methods, Vol. 195, No. 2, 2011, pp. 176-184. doi:10.1016/j.jneumeth.2010.12.005

[45]   Y. C. Chen, H. L. Hsu, Y. T. Lee, H. C. Su, S. J. Yen, C. H. Chen, W. L. Hsu, T. R. Yew, S. R. Yeh, D. J. Yao, Y. C. Chang and H. Chen, “An Active, Flexible Carbon Nanotube Microelectrode Array for Recording Electrocorticograms,” Journal of Neural Engineering, Vol. 8, No. 3, 2011, Article ID: 034001. doi:10.1088/1741-2560/8/3/034001

[46]   C. Nick, R. Joshi, J. J. Schneider and C. Thielemann, “Three-Dimensional Carbon Nanotube Electrodes for Extracellular Recording of Cardiac Myocytes,” Biointerphases, Vol. 7, 2012, p. 58. doi:10.1007/s13758-012-0058-2

[47]   R. A. Green, S. Baek, L. A. Poole-Warren and P. J. Martens, “Conducting Polymer-Hydrogels for Medical Electrode Applications,” Science and Technology of Advanced Materials, Vol. 11, No. 1, 2010, Article ID: 014107. doi:10.1088/1468-6996/11/1/014107

[48]   J. P. Frampton, M. R. Hynd, M. L. Shuler and W. Shain, “Effects of Glial Cells on Electrode Impedance Recorded from Neural Prosthetic Devices in Vitro,” Annals of Biomedical Engineering, Vol. 38, No. 3, 2010, pp. 1031-1047. doi:10.1007/s10439-010-9911-y

[49]   A. Prasad and J. C. Sanchez, “Quantifying Long-Term Microelectrode Array Functionality Using Chronic in Vivo Impedance Testing,” Journal of Neural Engineering, Vol. 9, No. 2, 2012, Article ID: 026028. doi:10.1088/1741-2560/9/2/026028

[50]   S. F. Cogan, “Neural Stimulation and Recording Electrodes,” Annual Review of Biomedical Engineering, Vol. 10, 2008, pp. 275-309. doi:10.1146/annurev.bioeng.10.061807.160518

[51]   J. O. Winter, M. Gokhale, R. J. Jensen, S. F. Cogan and J. F. Rizzo 3rd, “Tissue Engineering Applied to the Retinal Prosthesis: Neurotrophin-Eluting Polymeric Hydrogel Coatings,” Materials Science & Engineering. C, Materials for Biological Applications, Vol. 28, No. 3, 2008, pp. 448-453.

[52]   X. Y. Cui, L. Li, Y. Y. An and G. W. Lu, “Changes in the Contents of Glycogen and Lactate in the Brain and Blood during Hypoxic Preconditioning,” Acta Physiologica Sinica, Vol. 53, No. 4, 2001, pp. 325-328.

[53]   G. Santhanam, S. I. Ryu, M. Y. Byron, A. Afshar and K. V. Shenoy, “A High-Performance Brain-Computer Interface,” Nature, Vol. 442, No. 7099, 2006, pp. 195-198.

[54]   X. Cui, V. A. Lee, Y. Raphael, J. A. Wiler, J. F. Hetke, D. J. Anderson and D. C. Martin, “Surface Modification of Neural Recording Electrodes with Conducting Polymer/ Biomolecule Blends,” Journal of Biomedical Materials Research, Vol. 56, No. 2, 2001, pp. 261-272. doi:10.1002/1097-4636(200108)56:2<261::AID-JBM1094>3.0.CO;2-I

[55]   X. Y. Cui and D. C. Martin, “Electrochemical Deposition and Characterization of Poly(3,4-Ethylenedioxythiophene) on Neural Microelectrode Arrays,” Sensors and Actuators B: Chemical, Vol. 89, No. 1-2, 2003, pp. 92-102. doi:10.1016/S0925-4005(02)00448-3

[56]   P. A. Forcelli, C. T. Sweeney, A. D. Kammerich, B. C. Lee, L. H. Rubinson, Y. P. Kayinamura, K. Gale and J. F. Rubinson, “Histocompatibility and in Vivo Signal Throughput for PEDOT, PEDOP, P3MT, and Polycarbazole Electrodes,” Journal of Biomedical Materials Research. Part A, Vol. 100, No. 12, 2012, pp. 3455-3462.

[57]   X. Cui, H. Shin, C. Song, W. Laosinchai, Y. Amano and R. M. Brown Jr., “A Putative Plant Homolog of the Yeast beta-1,3-Glucan Synthase Subunit FKS1 from Cotton (Gossypium hirsutum L.) Fibers,” Planta, Vol. 213, No. 2, 2001, pp. 223-230. doi:10.1007/s004250000496

[58]   A. S. Dickey, A. Suminski, Y. Amit and N. G. Hatsopoulos, “Single-Unit Stability Using Chronically Implanted Multielectrode Arrays,” Journal of Neurophysiology, Vol. 102, No. 2, 2009, pp. 1331-1339. doi:10.1152/jn.90920.2008

[59]   M. A. Lebedev and M. A. Nicolelis, “Brain-Machine Interfaces: Past, Present and Future,” Trends in Neurosciences, Vol. 29, No. 9, 2006, pp. 536-546. doi:10.1016/j.tins.2006.07.004

[60]   C. L. Kolarcik, D. Bourbeau, E. Azemi, E. Rost, L. Zhang, C. F. Lagenaur, D. J. Weber and X. T. Cui, “In Vivo Effects of L1 Coating on Inflammation and Neuronal Health at the Electrode-Tissue Interface in Rat Spinal Cord and Dorsal Root Ganglion,” Acta Biomaterialia, Vol. 8, No. 10, 2012, pp. 3561-3575. doi:10.1016/j.actbio.2012.06.034

[61]   T. Stieglitz, H. Beutel, M. Schuettler and J. U. Meyer, “Micromachined, Polyimide-Based Devices for Flexible Neural Interfaces,” Biomedical Microdevices, Vol. 2, No. 4, 2000, pp. 283-294. doi:10.1023/A:1009955222114

[62]   M. A. L. Nicolelis, “Brain-Machine Interfaces to Restore Motor Function and Probe Neural Circuits,” Nature Reviews Neuroscience, Vol. 4, No. 5, 2003, pp. 417-422.

[63]   D. R. Kipke, “Implantable Neural Probe Systems for Cortical Neuroprostheses,” Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 7, 2004, pp. 5344-5347.

 
 
Top