Heat Transfer Enhancement of Cu-H_{2}O Nanofluid with Internal Heat Generation Using LBM

Affiliation(s)

School of Mechanical Engineering, Andong National University, Andong, South Korea.

School of Mechanical Engineering, Pukyong National University, Busan, South Korea.

School of Mechanical Engineering, Andong National University, Andong, South Korea.

School of Mechanical Engineering, Pukyong National University, Busan, South Korea.

ABSTRACT

Fluid flow and heat transfer analysis of Cu-H_{2}O nanofluid in a square cavity using a Thermal Lattice Boltzmann Method (TLBM) have been studied in the present work. The LBM has built up on the D2Q9 model and the single relaxation time method called the Lattice-BGK (Bhatnagar-Gross-Krook) model. The effect of suspended nanoparticles on the fluid flow and heat transfer analysis have been investigated for different non dimensional parameters such as particle volume fraction (φ) and particle diameters (dp) in presence of internal heat generation (q) of nanoparticles. It is seen that flow behaviors and the average rate of heat transfer in terms of the Nusselt number (Nu) as well as the thermal conductivity of nanofluid are effectively changed with the different controlling parameters such as particle volume fraction (2% ≤ φ ≤ 10%), particle diameter (dp = 5 nm to 40 nm) with fixed Rayleigh number, Ra = 105. The present results of the analysis are compared with the previous experimental and numerical results for both pure and nanofluid and it is seen that the agreement is good indeed among the results.

Fluid flow and heat transfer analysis of Cu-H

Cite this paper

M. Taher, Y. Lee and H. Kim, "Heat Transfer Enhancement of Cu-H_{2}O Nanofluid with Internal Heat Generation Using LBM," *Open Journal of Fluid Dynamics*, Vol. 3 No. 2, 2013, pp. 92-99. doi: 10.4236/ojfd.2013.32A015.

M. Taher, Y. Lee and H. Kim, "Heat Transfer Enhancement of Cu-H

References

[1] S. Lee, S. U.-S. Choi, S. Li and J. A. Eastman, “Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles,” Journal of Heat Transfer, Vol. 121, No. 2, 1999, pp. 280-289.

[2] Y. Xuan and Q. Li, “Heat Transfer Enhancement of Nanofluids,” International Journal of Heat and Fluid Flow, Vol. 21, No. 1, 2000, pp. 58-64. doi:10.1016/S0142-727X(99)00067-3

[3] K. Khanafer, K. Vafai and M. Lightstone, “Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids,” International Journal of Heat and Mass Transfer, Vol. 46, No. 19, 2003, pp. 3639-3653. doi:10.1016/S0017-9310(03)00156-X

[4] R. Krane and J. Jessee, “Some Detailed Field Measurement for a Natural Convection Flow in a Vertical Square Enclosure,” Proceedings of the First ASME-JSME Thermal Engineering Joint Conference, Honolulu, 20-24 March 1983, pp. 323-329.

[5] S. K. Das, S. U.-S. Choi, W. Yu and T. Pradeep, “Nanofluids, Science and Technology,” Wiley Interscience, Hoboken, 2007.

[6] M. A. Taher, “Fluid Flow and Heat Transfer Analysis of Pure and Nanofluids Using Lattice-Boltzmann Method,” Ph.D. Thesis, Pukyong National University, Busan, 2009.

[7] W. Yu, D. M. France, J. L. Routbort and S. U.-S. Choi, “Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements,” Heat Transfer Engineering, Vol. 29, No. 29, 2008, pp. 432-460. doi:10.1080/01457630701850851

[8] X. Shan and H. Chen, “Lattice Boltzmann Model for Simulating Flows with Multiple Phases and Components,” Physical Review E, Vol. 47, No. 3, 1993, pp. 1815-1820. doi:10.1103/PhysRevE.47.1815

[9] M. A. Taher and Y. W. Lee, “Numerical Study on Reduction of Fluid Forces Acting on a Circular Cylinder with Different Control Bodies Using Lattice-Boltzmann Method,” International Journal of Energy & Technology, Vol. 4, No. 18, 2012, pp. 1-7.

[10] M. A. Taher, S. C. Saha, Y. W. Lee and H. D. Kim, “Numerical Study of Lid-Driven Square Cavity with Heat Generation Using LBM,” American Journal of Fluid Dynamics, Vol. 3, No. 2, 2013, pp. 40-47. doi:10.5923/j.ajfd.20130302.04

[11] A. A. Mohammad, “Applied Lattice Boltzmann Method for Transport Phenomena, Momentum, Heat and Mass Transfer,” The University of Calgary, Calgary, 2007.

[12] S. Succi, “The Lattice Boltzmann Equation for Fluid Dynamics and beyond,” Oxford University Press, Oxford, 2001.

[13] X. Shan, “Simulation of Rayleigh-Bernard Convection Using Lattice Boltzmann Method,” Physical Review E, Vol. 55, No. 3, 1997, pp. 2780-2788. doi:10.1103/PhysRevE.55.2780

[14] M. A. Taher, K.-M. Li and Y.W. Lee, “Numerical Study of H2O-Cu Nanofluid Using Lattice-Boltzmann Method,” Journal of the Korean Society of Marine Engineering, Vol. 34, No. 1, 2010, pp. 53-61. doi:10.5916/jkosme.2010.34.1.053

[15] A. K. Santa, S. Sen and N. Chakraborti, “Study of Heat Transfer Augmentation in a Differentially Heated Square Cavity Using Copper-Water Nanofluid,” International Journal of Thermal Sciences, Vol. 47, No. 9, 2008, pp. 1113-1122. doi:10.1016/j.ijthermalsci.2007.10.005

[16] J. Cai, X. Huai, R. Yan and Y. Cheng, “Numerical Simulation on Enhancement of Natural Convection Heat Transfer by Acoustic Cavitation in a Square Enclosure,” Applied Thermal Engineering, Vol. 29, No. 10, 2009, pp. 1973-1982. doi:10.1016/j.applthermaleng.2008.09.015

[17] S. Sivasankaran, T. Asaithambi and S. Rajan, “Natural Convection of Nanofluids in a Cavity with Linearly Varying Wall Temperature,” Maejo International Journal of Science and Technology, Vol. 4, No. 3, 2010, pp. 468-482.

[18] J. M. Buick and C. A. Greated, “Gravity in Lattice Boltzmann Model,” Physical Review E, Vol. 61, No. 5, 2000, pp. 5307-5320. doi:10.1103/PhysRevE.61.5307

[19] Y. Xuan and Z. Yao, “Lattice Boltzmann Model for Nanofluids,” Heat Mass Transfer, Vol. 41, No. 3, 2005, pp. 199-205. doi:10.1007/s00231-004-0539-z

[20] N. S. Martys and H. Chen, “Simulation of Multicomponent Fluids in Complex Three-Dimensional Geometries by the Lattice Boltzmann Method,” Physical Review E, Vol. 53, No. 1, 1996, pp. 743-750. doi:10.1103/PhysRevE.53.743

[21] Y. M. Xuan, K. Yu and Q. Li, “Investigations of Flow and Heat Transfer of Nanofluids by the Thermal Lattice-Boltzmann Model,” Progress in Computational Fluid Dynamics, Vol. 5, No. 1-2, 2005, pp. 13-19.

[1] S. Lee, S. U.-S. Choi, S. Li and J. A. Eastman, “Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles,” Journal of Heat Transfer, Vol. 121, No. 2, 1999, pp. 280-289.

[2] Y. Xuan and Q. Li, “Heat Transfer Enhancement of Nanofluids,” International Journal of Heat and Fluid Flow, Vol. 21, No. 1, 2000, pp. 58-64. doi:10.1016/S0142-727X(99)00067-3

[3] K. Khanafer, K. Vafai and M. Lightstone, “Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids,” International Journal of Heat and Mass Transfer, Vol. 46, No. 19, 2003, pp. 3639-3653. doi:10.1016/S0017-9310(03)00156-X

[4] R. Krane and J. Jessee, “Some Detailed Field Measurement for a Natural Convection Flow in a Vertical Square Enclosure,” Proceedings of the First ASME-JSME Thermal Engineering Joint Conference, Honolulu, 20-24 March 1983, pp. 323-329.

[5] S. K. Das, S. U.-S. Choi, W. Yu and T. Pradeep, “Nanofluids, Science and Technology,” Wiley Interscience, Hoboken, 2007.

[6] M. A. Taher, “Fluid Flow and Heat Transfer Analysis of Pure and Nanofluids Using Lattice-Boltzmann Method,” Ph.D. Thesis, Pukyong National University, Busan, 2009.

[7] W. Yu, D. M. France, J. L. Routbort and S. U.-S. Choi, “Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements,” Heat Transfer Engineering, Vol. 29, No. 29, 2008, pp. 432-460. doi:10.1080/01457630701850851

[8] X. Shan and H. Chen, “Lattice Boltzmann Model for Simulating Flows with Multiple Phases and Components,” Physical Review E, Vol. 47, No. 3, 1993, pp. 1815-1820. doi:10.1103/PhysRevE.47.1815

[9] M. A. Taher and Y. W. Lee, “Numerical Study on Reduction of Fluid Forces Acting on a Circular Cylinder with Different Control Bodies Using Lattice-Boltzmann Method,” International Journal of Energy & Technology, Vol. 4, No. 18, 2012, pp. 1-7.

[10] M. A. Taher, S. C. Saha, Y. W. Lee and H. D. Kim, “Numerical Study of Lid-Driven Square Cavity with Heat Generation Using LBM,” American Journal of Fluid Dynamics, Vol. 3, No. 2, 2013, pp. 40-47. doi:10.5923/j.ajfd.20130302.04

[11] A. A. Mohammad, “Applied Lattice Boltzmann Method for Transport Phenomena, Momentum, Heat and Mass Transfer,” The University of Calgary, Calgary, 2007.

[12] S. Succi, “The Lattice Boltzmann Equation for Fluid Dynamics and beyond,” Oxford University Press, Oxford, 2001.

[13] X. Shan, “Simulation of Rayleigh-Bernard Convection Using Lattice Boltzmann Method,” Physical Review E, Vol. 55, No. 3, 1997, pp. 2780-2788. doi:10.1103/PhysRevE.55.2780

[14] M. A. Taher, K.-M. Li and Y.W. Lee, “Numerical Study of H2O-Cu Nanofluid Using Lattice-Boltzmann Method,” Journal of the Korean Society of Marine Engineering, Vol. 34, No. 1, 2010, pp. 53-61. doi:10.5916/jkosme.2010.34.1.053

[15] A. K. Santa, S. Sen and N. Chakraborti, “Study of Heat Transfer Augmentation in a Differentially Heated Square Cavity Using Copper-Water Nanofluid,” International Journal of Thermal Sciences, Vol. 47, No. 9, 2008, pp. 1113-1122. doi:10.1016/j.ijthermalsci.2007.10.005

[16] J. Cai, X. Huai, R. Yan and Y. Cheng, “Numerical Simulation on Enhancement of Natural Convection Heat Transfer by Acoustic Cavitation in a Square Enclosure,” Applied Thermal Engineering, Vol. 29, No. 10, 2009, pp. 1973-1982. doi:10.1016/j.applthermaleng.2008.09.015

[17] S. Sivasankaran, T. Asaithambi and S. Rajan, “Natural Convection of Nanofluids in a Cavity with Linearly Varying Wall Temperature,” Maejo International Journal of Science and Technology, Vol. 4, No. 3, 2010, pp. 468-482.

[18] J. M. Buick and C. A. Greated, “Gravity in Lattice Boltzmann Model,” Physical Review E, Vol. 61, No. 5, 2000, pp. 5307-5320. doi:10.1103/PhysRevE.61.5307

[19] Y. Xuan and Z. Yao, “Lattice Boltzmann Model for Nanofluids,” Heat Mass Transfer, Vol. 41, No. 3, 2005, pp. 199-205. doi:10.1007/s00231-004-0539-z

[20] N. S. Martys and H. Chen, “Simulation of Multicomponent Fluids in Complex Three-Dimensional Geometries by the Lattice Boltzmann Method,” Physical Review E, Vol. 53, No. 1, 1996, pp. 743-750. doi:10.1103/PhysRevE.53.743

[21] Y. M. Xuan, K. Yu and Q. Li, “Investigations of Flow and Heat Transfer of Nanofluids by the Thermal Lattice-Boltzmann Model,” Progress in Computational Fluid Dynamics, Vol. 5, No. 1-2, 2005, pp. 13-19.