Back
 FNS  Vol.4 No.8 A , August 2013
Contribution of Major Hydrophilic and Lipophilic Antioxidants from Papaya Fruit to Total Antioxidant Capacity
Abstract: Several studies have shown that phenolic and carotenoid compounds protect against oxidative stress, reducing the risk of cardiovascular diseases and some types of cancers. The objective of this research was to determine the individual contribution of the main phenolic compounds from the papaya fruit skin and the individual contribution of main carotenoids from the pulp for total antioxidant capacity at four ripening stages; and the individual and combined radical scavenging ability used the essays DPPH (radical 2, 2-diphenyl-1-picryhydrazyl) and ABTS (radical 2, 20-azino-bis (3-ethylbenzothiazoline)-6 sulphonic acid). Phenolic acids standards for this study were ferulic (FA), caffeic (CA) and p-coumaric (pCA) acids and carotenoids studied were Lycopene, β-carotene and β-cryptoxanthin. The phenol that showed the best DPPH· and ABTS·+ radical scavenging ability was CA, with 89.47% and 92.98%, respectively. Lycopene contributed the greatest to the TAC (11.9-43.2). Lycopene also showed the best DPPH· and ABTS ·+ radical scavenging ability with 62.12% and 94.26%, respectively. Antiradical ability of phenolics and carotenoids depended on the structure of the compound and its concentration.
Cite this paper: L. Sancho, E. Yahia and G. González-Aguilar, "Contribution of Major Hydrophilic and Lipophilic Antioxidants from Papaya Fruit to Total Antioxidant Capacity," Food and Nutrition Sciences, Vol. 4 No. 8, 2013, pp. 93-100. doi: 10.4236/fns.2013.48A012.
References

[1]   M. E. Yahia, “The Contribution of Fruit and Vegetable Consumption to Human Health,” In: L. A. de la Rosa, Ed., Fruit and Vegetable Phytochemicals, New York, 2010, pp. 3-51.

[2]   M. Genestra, “Oxyl Radicals, Redox-Sensitive Signaling Cascades and Antioxidants,” Cellular Signaling, Vol. 19, No. 1, 2007, pp. 1807-1819. doi:10.1016/j.cellsig.2007.04.009

[3]   Ch. Teow, V. Truong, R. F. McFeeters, R. L. Thompson, K. V. Pecota and G. C. Yencho, “Antioxidant Activities, Phenolic and B-Carotene Contents of Sweet Potato Genotypes with Varying Flesh Colours,” Food Chemistry, Vol. 103, No. 1, 2007, pp. 829-838. doi:10.1016/j.foodchem.2006.09.033

[4]   S. J. Kim and G. H. Kim, “Quantification of Quercetin in Different Parts of Onion and Its DPPH Radical Scavenging and Antibacterial Activity,” Food Science Biotechnology, Vol. 15, No. 1, 2006, pp. 39-43. doi:10.3390/ijms12063757

[5]   C. Rice-Evans, N. J. Miller and G. Paganga, “Structure— Antioxidant Activity Relationships of Flavonoids and Phenolic Acids,” Free Radical Biology & Medicine, Vol. 20, No. 1, 1996, pp. 933-956. doi:10.1016/0891-5849(95)02227-9

[6]   M. E. Yahia and J. J. Ornelas-Paz, “Chemistry, Stability and Biological Actions of Carotenoids,” In: L. A. de la Rosa, Ed., Fruit and Vegetable Phytochemicals, New York, 2010, pp. 177-222.

[7]   Q. Y. Wei, B. Zhou, Y. J. Cai, L. Yang and Z. L. Liu, “Synergistic Effect of Green Tea Polyphenols with Trolox on Free Radical-Induced Oxidative DNA Damage,” Food Chemistry, Vol. 96, No. 1, 2006, pp. 90-95. doi:10.1016/j.foodchem.2005.01.053

[8]   P. Iacopini, M. Baldi, P. Storchi and L. Sebastiani, “Catechin, Epicatechin, Quercetin, Rutin and Resveratrol in Red Grape: Content, in Vitro Antioxidant Activity and Interactions,” Journal of Food Composition and Analysis, Vol. 21, No. 1, 2008, pp. 589-598. doi:10.1016/j.jfca.2009.05.004

[9]   H. J. Heo, Y. J. Kim, D. Chung and D. O. Kim, “Antioxidant Capacities of Individual and Combined Phenolics in a Model System,” Food Chemistry, Vol. 104, No. 1, 2007, pp. 87-92. doi:10.1016/j.foodchem.2006.11.002

[10]   C. M. Ajila, K. A. Naidu, S. G. Bhat and R. U. J. S. Prasada, “Bioactive Compounds and Antioxidant Potential of Mango Peel Extract,” Food Chemistry, Vol. 105, No. 1, 2007, pp. 982-988. doi:10.1016/j.foodchem.2007.04.052

[11]   R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. Rice-Evans, “Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorisation Assay,” Free Radical Biology & Medicine, Vol. 26, No. 9-10, 1999, pp. 1231-1237.

[12]   L. E. Gayosso-García Sancho, E. M. Yahia and G. A. González-Aguilar, “Identification and Quantification of Phenols, Carotenoids, and Vitamin C from Papaya (Carica Papaya L., cv. Maradol) Fruit Determined by HPLC-DADMS/MS-ESI,” Food Research International, Vol. 44, No. 5, 2011, pp. 1284-1291. doi:10.1016/j.foodres.2010.12.001

[13]   J. J. Ornelas-Paz, M. E. Yahia and A. Gardea, “Changes in External and Internal Color during Postharvest Ripening of “Manila” and “Ataulfo” Mango Fruit and Relationship with Carotenoid Content Determined by Liquid Chromatography-APcI+-Time-of-Flight Mass Spectrometry,” Postharvest Biology and Technology, Vol. 50, No. 1, 2008, pp. 145-152. doi:10.1016/j.postharvbio.2008.05.001

[14]   W. Brand-Williams, M. E. Cuvelier and C. Berset, “Use of a Free Radical Method to Evaluate Antioxidant Activity,” Lebensmittel-Wissenschaft & Technologie, Vol. 28, No. 1, 1995, pp. 25-30.

[15]   P. Molyneux, “The Use of the Stable Radical Dipheylpicrylhydrazyl (DPPH) for Estimating Antioxidant Activity,” Songklanakarin Journal of Science and Technology, Vol. 26, No. 1, 2004, pp. 211-219.

[16]   N. J. Miller, J. Sampson, L. Canadeias, P. M. Bramley and C. A. Rice-Evans, “Antioxidant Activities Carotenes and Xanthophylls,” Free Radical Research, Vol. 384, No. 3, 1996, pp. 240-242.

[17]   R. P. Re, N. A. Proteggente, A. Pannala, M. Yang and C. Rice-Evans, “Antioxidant Activity Applying an Improved ABTS Radical Cation Decolonization Assay,” Free Radical Biology & Medicine, Vol. 26, No. 9-10, 1998, pp. 1231-1237. doi:10.1016/S0891-5849(98)00315-3

[18]   L. E. Gayosso-García Sancho, E. M. Yahia, M. A. Martínez-Téllez and G. A. González-Aguilar, “Effect of Maturity Stage of Papaya Maradol on Physiological and Biochemical Parameters,” American Journal of Agricultural and Biological Sciences, Vol. 5, No. 2, 2010, pp. 199-208. doi:10.3844/ajabssp.2010.194.203

[19]   D. M. Rivera-Pastrana, E. M. Yahia and G. Gonzalez-Aguilar, “Phenolic and Carotenoid Profiles of Papaya Fruit (Carica papaya L.) and their Contents Under Low Temperature Storage,” Journal of the Science of Food & Agriculture, Vol. 90, No. 14, 2010, pp. 2358-2365. doi:10.1002/jsfa.4092

[20]   N. Castillo-Munoz, M. Fernández-González, S. GómezAlonso, E. García-Romero and I. Hermosín-Gutiérrez, “Red-Color Related Phenolic Composition of Garnacha Tintorera (Vitis vinifera L.) Grapes and Red Wines,” Journal of Agricultural of Food Chemistry, Vol. 57, No. 17, 2009, pp. 7883-7891. doi:10.1021/jf9002736

[21]   A. L. Gancel, P. Alter, C. Dhuique-Mayer, J. Rualesand and F. Vaillant, “Identifying Carotenoids and Phenolic Compounds in Naranjilla (Solanum quitoense Lam. var. Puyo hybrid), an Andean Fruit,” Journal of Agricultural of Food Chemistry, Vol. 56, No. 24, 2008, pp. 11890-11899. doi:10.1021/jf801515p

[22]   H. El Gharras, “Polyphenols: Food Sources, Properties and Applications—A Review,” International Journal of Food Science & Technology, Vol. 44, No. 12, 2009, pp. 25122518. doi:10.1111/j.1365-2621.2009.02077.x

[23]   J. Sun, F. Liang, Y. Bin, P. Li and C. Duan, “Screening Non-Colored Phenolics in Red Wines Using Liquid Chromatography/Ultraviolet and Mass Spectrometry/Mass Spectrometry Libraries,” Molecules, Vol. 12, No. 3, 2007, pp. 679-693. doi:10.3390/12030679

[24]   C. Jaikang and C. Chaiyasut, “Caffeic Acid and Its Derivatives as Heme Oxygenase 1 Inducer in Hep G2 Cell Line,” Journal of Medicinal Plants Research, Vol. 4, No. 10, 2010, pp. 940-946.

[25]   P. Kylli, P. Nousiainen, P. Biely, J. Sipila, M. Tenkanen and M. Heinonen, “Antioxidant Potential of Hydroxycinnamic Acid Glycoside Esters,” Journal of Agricultural of Food Chemistry, Vol. 56, No. 12, 2008, pp. 4797-4805. doi:10.1021/jf800317v

[26]   M. M. Wall, “Ascorbic Acid, Vitamin A, and Mineral Composition of Banana (Musa sp.) and Papaya (Carica papaya) Cultivars Grown in Hawaii,” Journal of Food Composition & Analysis, Vol. 19, No. 1, 2006, pp. 434-445. doi:10.1016/j.jfca.2006.01.002

[27]   A. Jiménez-Escrig, I. Jiménez-Jiménez, C. Sánchez-Moreno and F. Saura-Calixto, “Evaluation of Free Radical Scavenging of Dietary Carotenoids by the Stable Radical 2,2-dip Henyl-1-picrylhydrazyl,” Journal of the Science of Food & Agriculture, Vol. 80, No. 11, 2000, pp. 16861690. doi:10.1002/1097-0010(20000901)80:11<1686::AID-JSFA694>3.0.CO;2-Y

[28]   A. Mortensen, L. H. Skibsted and T. G. Truscott, “The Interaction of Dietary Carotenoids with Radical Species,” Archives of Biochemistry and Biophysics, Vol. 385, No. 1, 2001, pp. 13-19. doi:10.1006/abbi.2000.2172

[29]   F. Shahidi and A. Chandrasekara, “Hydroxycinnamates and Their in Vitro and in Vivo Antioxidant Activities,” Phytochemistry Reviews, Vol. 9, No. 1, 2010, pp. 147-170. doi:10.1007/s11101-009-9142-8

[30]   J. H. Chen and C. Ho, “Antioxidant Activities of Caffeic Acid and Its Related Hydroxycinnamic Acid Compounds,” Journal of Agricultural of Food Chemistry, Vol. 45, No. 7, 1997, pp. 2374-2378. doi:10.1021/jf970055t

[31]   E. A. González and M. A. Nazareno, “Antiradical Action of Flavonoide Ascorbate Mixtures,” Food Science & Technology, Vol. 44, No. 2, 2011, pp. 558-564.

[32]   S. Knasmüller, A. Nersesyan, M. Misik, C. Gerner, W. Mikulits, V. Ehrlich, C. Hoelz, A. Szakmary and K. H. Wagner, “Use of Conventional and -Omics Based Methods for Health Claims of Dietary Antioxidants: A Critical Overview,” British Journal of Nutrition, Vol. 99, No. 1, 2008, pp. 3-52. doi:10.1017/S0007114508965752

[33]   N. J. Kang, K. W. Lee, B. J. Shin, S. K. Jung, M. K. Hwang, A. M. Bode, Y. S. Heo, H. J. Lee and Z. Dong, “Caffeic Acid, A Phenolic Phytochemical in Coffee, Directly Inhibits Fyn Kinase Activity and UVB-Induced COX-2 Expression,” Carcinogenesis, Vol. 30, No. 2, 2009, pp. 321330. doi:10.1093/carcin/bgn282

[34]   T. W. Chung, S. K. Moon and Y. C. Chang, “Novel and Therapeutic Effect of Caffeic Acid and Caffeic Acid Phenyl Ester on Hepatocarcinoma Cells: Complete Regression of Hepatoma Growth and Metastasis by Dual Mechanism,” FASEB Journal, Vol. 18, No. 14, 2004, pp. 1670-1681. doi:10.1096/fj.04-2126com

[35]   J. J. Yan, J. Y. Cho and H. S. Kim, “Protection against Betaamyloid Peptide Toxicity in Vivo with Long-Term Administration of Ferulic Acid,” British Journal of Pharmacology, Vol. 133, No. 1, 2001, pp. 89-96. doi:10.1038/sj.bjp.0704047

[36]   J. R. Mein, F. Lian and X. D. Wang, “Biological Activity of Lycopene Metabolites: Implications for Cancer Prevention,” Nutrition Reviews, Vol. 66, No. 12, 2008, pp. 667-683. doi:10.1111/j.1753-4887.2008.00120.x

[37]   N. Druesne-Pecollo, P. Latino-Martel, T. Norat, E. Barrandon, S. Bertrais, P. Galan and S. Hercberg, “Beta-Carotene Supplementation and Cancer Risk: A Systematic Review and Metaanalysis of Randomized Controlled Trials,” International Journal of Cancer, Vol. 127, No. 1, 2010, pp. 172-184. doi:10.1002/ijc.25008

[38]   C. S. Foote, “Definition of Type I and Type II Photosensitized Oxidation,” Photochemistry & Photobiology, Vol. 54, No. 5, 1991, p. 659. doi:10.1111/j.1751-1097.1991.tb02071.x

[39]   M. B. Arnao, “Some Methodological Problems in the Determination of Antioxidant Activity Using Chromogen Radicals: A Practical Case,” Trends in Food Science & Technology, Vol. 11, No. 11, 2000, pp. 419-421.

[40]   R. Amarowicz, “Lycopene as a Natural Antioxidant,” European Journal of Lipid Science & Technology, Vol. 113, 2011, pp. 675-677. doi:10.1002/ejlt.201100157

[41]   R. Schmidt, “Deactivation of Singlet Oxygen by Carotenoids: Internal Conversion of Excited Encounter Complexes,” The Journal of Physical Chemistry, Vol. 108, No. 26, 2004, pp. 5509-5513. doi:10.1021/jp048958u

[42]   W. Stahl, A. Junghans, B. de Boer, E. S. Driomina, K. Briviba and H. Sies, “Carotenoid Mixtures Protect Multilamellar Liposomes Against Oxidative Damage: Synergistic Effects of Lycopene and Lutein,” FEBS Letters, Vol. 427, No. 2, 1998, pp. 305-308. doi:10.1016/S0014-5793(98)00434-7

[43]   N. M. A. Hassimotto, M. I. Genovese and F. M. Lajolo, “Antioxidant Activity of Dietary Fruits, Vegetables, and Commercial Frozen Fruit Pulps,” Journal of Agricultural of Food Chemistry, Vol. 53, No. 8, 2005, pp. 2928-2935. doi:10.1021/jf047894h

[44]   H. Palafox-Carlos, J. Gil-Chávez, R. R. Sotelo-Mundo, J. Namiesnik, S. Gorinstein and G. A. González-Aguilar, “Antioxidant Interactions Between Major Phenolic Compounds Found in ‘Ataulfo’ Mango Pulp: Chlorogenic, Gallic, Protocatechuic and Vanillic Acids,” Molecules, Vol. 17, 2012, pp. 12657-12664.

 
 
Top