ANP  Vol.2 No.3 , August 2013
Conical Nanoparticles for Blood Disease Detection

Metallic nanoparticles play an important role in the design of sensing platforms. In this paper, a new electromagnetic study for conical metal nanoparticles, working in the Near Infrared and Visible frequency regime, is proposed. The structures consist of inclusions, arranged in an array configuration, embedded in a dielectric environment. The aim of this work is to develop new analytical models, in order to describe the nanoparticles electromagnetic behavior in terms of extinction cross-section (absorption and scattering). The closed-form formulas link the conical nanoparticles geometrical and electromagnetic parameters to their resonant frequency properties in terms of wavelength position, magnitude and bandwidth. The proposed models are compared to the numerical results and to the experimental ones, reported in literature. Good agreement is obtained. The proposed analytical formulas represent useful tools for sensing applications. For this reason, exploiting such models a new sensing platform able to detect different blood diseases is obtained. Numerical results confirm the capability of the proposed structure to be used as a sensing platform for medical diagnostics.

Cite this paper
Spada, L. , Iovine, R. , Tarparelli, R. and Vegni, L. (2013) Conical Nanoparticles for Blood Disease Detection. Advances in Nanoparticles, 2, 259-265. doi: 10.4236/anp.2013.23036.
[1]   Y. F. Chau, Z.-H. Jiang, H. Y. Li, G. M. Lin, F. L. Wu and W. H. Lin, “Localized Resonance of Composite Core-Shell Nanospheres, Nanobars and Nanospherical Chains,” Progress in Electromagnetics Research, Vol. 28, 2011, pp. 183-199. doi:10.2528/PIERB10102705

[2]   J. B. Pendry, “Playing Tricks with Light,” Science, Vol. 285, No. 5434, 1999, pp. 1687-1688. doi:10.1126/science.285.5434.1687

[3]   A. El-Ansary and L.M. Faddah, “Nanoparticles as Bio chemical Sensors,” Nanotechnology, Science and Appli cations, Vol. 3, 2010, pp. 65-76. doi:10.2147/NSA.S8199

[4]   X.-J. Chen, B. L. Sanchez-Gaytan, Z. Qian and S.-J. Park, “Noble Metal Nanoparticles in DNA Detection and De livery,” WIREs Nanomedicine and Nanobiotechnology, Vol. 4, No. 3, 2012, pp. 273-290. doi:10.1002/wnan.1159

[5]   X. Yang, J. Li, H. Pei, D. Li, Y. Zhao, J. Gao, J. Lu, J. Shi, C. Fan and Q. Huang, “Pattern Recognition Analysis of Proteins Using DNA-Decorated Catalytic Gold Nano particles,” 2013. doi:10.1002/smll.201202772

[6]   C. Nietzold and F. Lisdat, “Fast Protein Detection Using Absorption Properties of Gold Nanoparticles,” Analyst, Vol. 137, No. 12, 2012, pp. 2821-2826. doi:10.1039/C2AN35054H

[7]   R. Bukasov, T. A. Ali, P. Nordlander and J. S. Shumaker Parry, “Probing the Plasmonic Nearfield of Gold Nano crescent Antennas,” ACS Nano, Vol. 4, No. 11, 2010, pp. 6639-6650. doi:10.1021/nn101994t

[8]   W. J. Galush, S. A. Shelby, M. J. Mulvihill, A. Tao, P. Yang and J. T. Groves, “A Nanocube Plasmonic Sensor for Molecular Binding on Membrane Surfaces,” Nano Letters, Vol. 9, No. 5, 2009, pp. 2077-2082. doi:10.1021/nl900513k

[9]   N. L. Rosi and C. A. Mirkin, “Nanostructures in Biodia gnostics,” Chemical Reviews, Vol. 105, No. 4, 2005, pp. 1547-1562. doi:10.1021/cr030067f

[10]   H. M. Hiep, T. Endo, K. Kerman, M. Chikae, D. K. Kim, S. Yamamura, Y. Takamura and E. Tamiya, “A Localized Surface Plasmon Resonance Based Immunosensor for the Detection of Casein in Milk,” Science and Technology of Advanced Materials, Vol. 8, No. 4, 2007, pp. 331-338. doi:10.1016/j.stam.2006.12.010

[11]   D. Yelin, D. Oron, S. Thiberge, E. Moses, Y. Silberberg and I. Willner, “Multiphoton Plasmon-Resonance Micro scopy,” Optics Express, Vol. 11, No. 9, 2003, pp. 1385-1391. doi:10.1364/OE.11.001385

[12]   K. Jakobsohn, M. Motiei, M. Sinvani and R. Popovtzer, “Towards Real-Time Detection of Tumor Margins Using Photothermal Imaging of Immune-Targeted Gold Nano particles,” International Journal of Nanomedicine, Vol. 7, 2012, pp. 4707-4713. doi:10.2147/IJN.S34157

[13]   W. Cai, T. Gao, H. Hong and J. Sun, “Applications of Gold Nanoparticles in Cancer Nanotechnology,” Nanote chnology, Science and Applications, Vol. 1, 2008, pp. 17-32. doi:10.2147/NSA.S3788

[14]   N. A. Issa and R. Guckenberger, “Fluorescence near Me tal Tips: The Roles of Energy Transfer and Surface Plas mon Polaritons,” Optics Express, 2007, Vol. 15, No. 19, pp. 12131-12144. doi:10.1364/OE.15.012131

[15]   M. Fleischer, A. Weber-Bargioni, M. V. P. Altoe, A. M. Schwartzberg, P. J. Schck, S. Cabrini and D. P. Kern, “Gold Nanocone Near-Field Scanning Optical Microscopy Pro bes,” ACS Nano, Vol. 5, No. 4, 2011, pp. 2570-2579. doi:10.1021/nn102199u

[16]   M. R. Gartia, M. Lu and G. L. Liu, “Surface Plasmon Coupled Whispering Gallery Mode for Guided and Free Space Electromagnetic Waves,” Plasmonics, Vol. 8, No. 2, 2012, pp. 361-368. doi:10.1007/s11468-012-9398-5

[17]   C. Bohren and D. Huffmann, “Absorption and Scattering of Light by Small Particles,” John Wiley, New York, 1983.

[18]   L. La Spada, R. Iovine and L. Vegni, “Nanoparticle Ele ctromagnetic Properties for Sensing Applications,” Advances in Nanoparticles, Vol. 1, No. 2, 2012, pp. 9-14. doi: 10.4236/anp.2012.12002

[19]   A. D. Yaghjian, “Electric Dyadic Green’s Functions in the Source Region,” Proceedings of IEEE, Vol. 68, No. 2, 1980, pp. 248-263.

[20]   J. Avelin, A. N. Arslan, J. Brannback, M. Flykt, C. Icheln, J. Juntunen, K. Karkkainen, T. Niemi, O. Nieminen, T. Tares, C. Toma, T. Uusitupa and A. Sihvola, “Electric Fields in the Source Region: The Depolarization Dyadic for a Cubic Cavity,” Electrical Engineering, Vol. 81, No. 4, 1998, pp. 199-202. doi:10.1007/BF01233270

[21]   L. D. Landau and E. M. Lifshitz, “Electrodynamics of Continuous Media,” 2nd Edition, Pergamon Press, Oxford, 1984.

[22]   A. Sihvola, “Electromagnetic Mixing Formulas and Ap plications,” The Institution of Engineering and Techno logy, London, 2008.

[23]   A. Sihvola, “Dielectric Polarization and Particle Shape Effects,” Journal of Nanomaterials, Vol. 2007, No. 1, 2007, pp. 1-9. doi:10.1155/2007/45090

[24]   J. G. Van Bladel, “Electromagnetic Fields,” John Wiley & Sons, Hoboken, 2007.

[25]   CST Computer Simulation Technology.

[26]   P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Physical Review B, Vol. 6, No. 12, 1972, pp. 4370-4379. doi:10.1103/PhysRevB.6.4370

[27]   T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz and R. P. Van Duyne, “Nanosphere Lito graphy: Effect of the External Dielectric Medium on the Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles,” Journal of Physical Chemistry B, Vol. 103, No. 45, 1999, pp. 9846-9853. doi:10.1021/jp9926802

[28]   H. C. George, Z. Jing, M. H. Erin, C. S. George and R. P. Van Duyne, “Plasmonic Properties of Copper Nanoparti cles Fabricated by Nanosphere Lithography,” Nano Let ters, Vol. 7, No. 7, 2007, pp. 1947-1952.

[29]   P. Y. Chung, T. H. Lin, G. Schultz, C. Batich and P. Jiang, “Nanopyramid Surface Plasmon Resonance Sensors,” Applied Physics Letters, Vol. 96, No. 26, 2010, Article ID: 2611081. doi:10.1063/1.3460273

[30]   A. D. McFarl and R. P. Van Duyne, “Single Silver Na noparticles as Real-Time Optical Sensors with Zeptomole Sensitivity,” Nano Letters, Vol. 3, No. 8, 2003, pp. 1057-1062. doi:0.1021/nl034372s

[31]   J. S. Sekhon and S S Verma, “Refractive Index Sensi tivity Analysis of Ag, Au, and Cu Nanoparticles,” Plas monics, Vol. 6, No. 2, 2011, pp. 311-317. doi:10.1007/s11468-011-9206-7

[32]   A. Kilejian, “Characterization of a Protein Correlated with the Production of Knob-Like Protrusions on Mem branes of Erythrocytes Infected with Plasmodium Falcu parum,” Proceedings of the National Academy of Sci ences of the United State America, Vol. 76, No. 9, 1979, pp. 4650-4653. doi:10.1073/pnas.76.9.4650

[33]   J. M. Kontio, J. Simonen, J. Tommila and M. Pessa, “Arrays of Metallic Nanocones Fabricated by UV-Nano imprint Lithography,” Microelectronic Engineering, Vol. 87, No. 9, 2010, pp. 1711-1715. doi:10.1016/j.mee.2009.08.015

[34]   M. Fleischer, A. Weber-Bargioni, S. Cabrini and D. P. Kern, “Fabrication of Metallic Nanocones by Induced De position of Etch Masks and Ion Milling,” Microelectronic Engineering, Vol. 88, No. 8, 2011, pp. 2247-2250. doi:10.1016/j.mee.2011.02.090

[35]   D. Di, P. Dong, J. Chen, J. Chen, Z. Zhou, X. Wu and S. Li, “Inexpensive and Fast Fabrication of Ordered Gold Nanocone Arrays,” IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Kaoh siung, 20-23 February 2011, pp. 555-558. doi:10.1109/NEMS.2011.6017416

[36]   T. Kim, J. Kim, S. Jun Son and S. Seo, “Gold Nanocones Fabricated by Nanotransfer Printing and Their Applica tion for Field Emission,” Nanotechnology, Vol. 19, No. 39, 2008. doi:10.1088/0957-4484/19/29/295302

[37]   Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld and S. Suresh, “Refractive Index Maps and Membrane Dynamics of Human Red Blood Cells Parasitized by Plasmodium Falciparum,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 105, No. 37, 2008, pp. 13730-13735. doi:10.1073/pnas.0806100105