WJCD  Vol.3 No.5 , August 2013
Opiate exposure increases arterial stiffness, advances vascular age and is an independent cardiovascular risk factor in females: A cross-sectional clinical study

Background: Whilst several studies have demonstrated poor cardiovascular health in opiate dependence, its role as a cardiovascular risk factor has not been considered. Methods: Pulse wave analysis was undertaken by radial arterial tonometry (SphygmoCor) in female control and opiate-dependent patients and compared to lifetime opiate use. Results: 222 opiate dependent women were compared to 175 controls. Opiate dependent patients were receiving treatment with buprenorphine (83.3%), methadone (13.5%), or naltrexone (3.2%). Non log transformed chronologic age (CA) for the two groups was 33.58 ± 0.57 (opiate) vs. 32.62 ± 0.96 (controls) years (mean ± S.E.M.; P = 0.39). Vascular Reference Age (RA) 39.30 ± 1.28, vs. 35.03 ± 1.41 the RA-CA difference (5.73 ± 1.02 vs. 2.41 ± 0.91) and the RA/CA ratio (1.16 ± 0.03 vs. 1.07 ± 0.02; all P < 0.02), and all measurements of central arterial stiffness (P < 0.02) were significantly worse for opiates compared to controls. When adjusted for CA, RA and central augmentation pressure and index were all worse by themselves and in interaction with CA (all P < 0.005). At 60 years the modelled RA’s were 83.79 and 67.52 years respectively. The opiate dose-duration interaction showed a dose-response effect with RA (P = 0.0033). After full adjustment for established cardiovascular risk factors, the dose-duration interaction remained significant (P = 10-6), was included in 10 other terms, and dose or duration was included in 15 other interactions. Conclusion: These data show that lifetime opiate use is significantly associated with increased arterial stiffness and vascular age and suggest a dose-response relationship. This relationship is robust and persists after full multivariate adjustment. These findings carry far-reaching implications for opiate-induced generalized acceleration of organismal ageing.

Cite this paper
Reece, A. and Hulse, G. (2013) Opiate exposure increases arterial stiffness, advances vascular age and is an independent cardiovascular risk factor in females: A cross-sectional clinical study. World Journal of Cardiovascular Diseases, 3, 361-370. doi: 10.4236/wjcd.2013.35056.
[1]   Jamison, R.N., Serraillier, J. and Michna, E. (2011) Assessment and treatment of abuse risk in opioid prescribeing for chronic pain. Pain Research and Treatment, 941808.

[2]   Drug Abuse Warning Network (DAWN). (2009) Treatment Episode Data Set—Admissions (Teds-A)—Concatenated, 1992 to 2009 (Computer file). Prepared by Synectics for Management Decisions, Incorporated. ICPSR25221-v4.

[3]   Darke, S., Degenhardt, L. and Mattick, R. (2007) Mortality amongst illicit drug users: Epidemiology, causes and intervention. Cambridge University Press, Sydney, 2007.

[4]   Darke, S., Duflou, J. and Torok, M. (2010) The comparative toxicology and major organ pathology of fatal methadone and heroin toxicity cases. Drug and Alcohol Dependence, 106, 1-6. doi:10.1016/j.drugalcdep.2009.07.014

[5]   Oviedo-Joekes, E., Brissette, S., Marsh, D.C., Lauzon, P., Guh, D., Anis, A. and Schechter, M.T. (2009) Diacetylmorphine versus methadone for the treatment of opioid addiction. The New England Journal of Medicine, 361, 777-786. doi:10.1056/NEJMoa0810635

[6]   Darke, S., Kaye, S. and Duflou, J. (2006) Systemic disease among cases of fatal opioid toxicity. Addiction, 101, 1299-1305. doi:10.1111/j.1360-0443.2006.01495.x

[7]   Degenhardt, L., Randall, D., Hall, W., Law, M., Butler, T. and Burns, L. (2009) Mortality among clients of a statewide opioid pharmacotherapy program over 20 years: Risk factors and lives saved. Drug and Alcohol Dependence, 105, 9-15. doi:10.1016/j.drugalcdep.2009.05.021

[8]   Sadeghian, S., Darvish, S., Davoodi, G., Salarifar, M., Mahmoodian, M., Fallah, N. and Karimi, A.A. (2007) The association of opium with coronary artery disease. European Journal of Cardiovascular Prevention & Rehabilitation, 14, 715-717. doi:10.1097/HJR.0b013e328045c4e9

[9]   Sadeghian, S., Dowlatshahi, S., Karimi, A. and Tazik, M. (2011) Epidemiology of opium use in 4398 patients admitted for coronary artery bypass graft in Tehran Heart Center. Journal of Cardiothoracic Surgery (Torino), 52, 140-141.

[10]   Feero, W.G., Guttmacher, A.E. and McCarthy, M.I. (2010) Genomics, type 2 diabetes, and obesity. New England Journal of Medicine, 363, 2339-2350. doi:10.1056/NEJMra0906948

[11]   O’Donnell, C.J. and Nabel, E.G. (2011) Genomics of Cardiovascular Disease. New England Journal of Medicine, 365, 2098-2109. doi:10.1056/NEJMra1105239

[12]   Helgadottir, A., Thorleifsson, G., Manolescu, A., Gretarsdottir, S., Blondal, T., Jonasdottir, A., Sigurdsson, A., Baker, A., Palsson, A., Masson, G., et al. (2007) A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science, 316, 1491-1493. doi:10.1126/science.1142842

[13]   McPherson, R., Pertsemlidis, A., Kavaslar, N., Stewart, A., Roberts, R., Cox, D.R., Hinds, D.A., Pennacchio, L.A., Tybjaerg-Hansen, A., Folsom, A.R., et al. (2007) A common allele on chromosome 9 associated with coronary heart disease. Science, 316, 1488-1491. doi:10.1126/science.1142447

[14]   Pasmant, E., Sabbagh, A., Vidaud, M. and Bieche, I. (2010) ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS. The FASEB Journal, 25, 444-448. doi:10.1096/fj.10-172452

[15]   Visel, A., Zhu, Y., May, D., Afzal, V., Gong, E., Attanasio, C., Blow, M.J., Cohen, J.C., Rubin, E.M. and Pennacchio, L.A. (2010) Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice. Nature, 464, 409-412. doi:10.1038/nature08801

[16]   Harismendy, O., Notani, D., Song, X., Rahim, N.G., Tanasa, B., Heintzman, N., Ren, B., Fu, X.D., Topol, E.J., Rosenfeld, M.G. and Frazer, K.A. (2011) 9p21 DNA variants associated with coronary artery disease impair interferon-gamma signalling response. Nature, 470, 264-268. doi:10.1038/nature09753

[17]   Bazarov, A.V., Van Sluis, M., Hines, W.C., Bassett, E., Beliveau, A., Campeau, E., Mukhopadhyay, R., Lee, W.J., Melodyev, S., Zaslavsky, Y., et al. (2010) p16INK4a-mediated suppression of telomerase in normal and malignant human breast cells. Aging Cell, 9, 736-746. doi:10.1111/j.1474-9726.2010.00599.x

[18]   Coppe, J.P., Rodier, F., Patil, C.K., Freund, A., Desprez, P.Y. and Campisi, J. (2011) Tumor suppressor and aging biomarker p16INK4a induces cellular senescence without the associated inflammatory secretory phenotype. The Journal of Biological Chemistry, 286, 36396-36403. doi:10.1074/jbc.M111.257071

[19]   Bhaumik, D., Scott, G.K., Schokrpur, S., Patil, C.K., Orjalo, A.V., Rodier, F., Lithgow, G.J. and Campisi, J. (2009) MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8. Aging (Albany NY), 1, 402-411.

[20]   Zagon, I.S. and McLaughlin, P.J. (1977) Morphine and brain growth retardation in the rat. Pharmacology, 15, 276-282. doi:10.1159/000136699

[21]   McLaughlin, P.J., Zagon, I.S. and White, W.J. (1978) Perinatal methadone exposure in rats. Effects on body and organ development. Biology of the Neonat, 34, 48-54. doi:10.1159/000241104

[22]   Cheng, F., Zagon, I.S., Verderame, M.F. and McLaughlin, P.J. (2007) The opioid growth factor (OGF)-OGF receptor axis uses the p16 pathway to inhibit head and neck cancer. Cancer Research, 67, 10511-10518. doi:10.1158/0008-5472.CAN-07-1922

[23]   Cheng, F., McLaughlin, P.J., Verderame, M.F. and Zagon, I.S. (2009) The OGF-OGFr axis utilizes the p16INK4a and p21WAF1/CIP1 pathways to restrict normal cell proliferation. Molecular Biology of the Cell, 20, 319-327. doi:10.1091/mbc.E08-07-0681

[24]   Zagon, I.S., Verderame, M.F. and McLaughlin, P.J. (2002) The biology of the opioid growth factor receptor (OGFr). Brain Research Reviews, 38, 351-376. doi:10.1016/S0165-0173(01)00160-6

[25]   Chien, K.R. and Karsenty, G. (2005) Longevity and lineages: Toward the integrative biology of degenerative diseases in heart, muscle, and bone. Cell, 120, 533-544. doi:10.1016/j.cell.2005.02.006

[26]   Reece, A.S. (2007) Psychosocial and treatment correlates of opiate free success in a clinical review of a naltrexone implant program. Substance Abuse Treatment, Prevention, and Policy, 2, 35-49. doi:10.1186/1747-597X-2-35

[27]   Reece, A.S. (2007) Evidence of Accelerated Ageing in Clinical Drug Addiction from Immune, Hepatic and Metabolic Biomarkers. Immunity & Ageing, 4, 6-15. doi:10.1186/1742-4933-4-6

[28]   Cooper, O.B., Brown, T.T. and Dobs, A.S. (2003) Opiate drug use: A potential contributor to the endocrine and metabolic complications in human immunodeficiency virus disease. Clinical Infectious Diseases, 37, S132-S136. doi:10.1086/375879

[29]   Kolarzyk, E., Pach, D., Wojtowicz, B., Szpanowska-Wohn, A. and Szurkowska, M. (2005) Nutritional status of the opiate dependent persons after 4 years of methadone maintenance treatment. Przegl Lek, 62, 373-377.

[30]   Rosen, D., Smith, M.L. and Reynolds, C.F. (2008) The prevalence of mental and physical health disorders among older methadone patients. The American Journal of Geriatric Psychiatry, 16, 488-497. doi:10.1097/JGP.0b013e31816ff35a

[31]   Hser, Y.I., Gelberg, L., Hoffman, V., Grella, C.E., McCarthy, W. and Anglin, M.D. (2004) Health conditions among aging narcotics addicts: Medical examination results. Journal of Behavioral Medicine, 27, 607-622. doi:10.1007/s10865-004-0005-x

[32]   Ceriello, A., Giugliano, D., Passariello, N., Quatraro, A., Dello Russo, P., Torella, R. and D’Onofrio, F. (1987) Impaired glucose metabolism in heroin and methadone users. Hormone and Metabolic Research, 19, 430-433. doi:10.1055/s-2007-1011844

[33]   Cunha-Oliveira, T., Rego, A.C., Garrido, J., Borges, F., Macedo, T. and Oliveira, C.R. (2007) Street heroin induces mitochondrial dysfunction and apoptosis in rat cortical neurons. Journal of Neurochemistry, 101, 543-554. doi:10.1111/j.1471-4159.2006.04406.x

[34]   Hutchinson, M.R., Zhang, Y., Shridhar, M., Evans, J.H., Buchanan, M.M., Zhao, T.X., Slivka, P.F., Coats, B.D., Rezvani, N., Wieseler, J., et al. (2010) Evidence that opioids may have toll-like receptor 4 and MD-2 effects. Brain, Behavior, and Immunity, 24, 83-95. doi:10.1016/j.bbi.2009.08.004

[35]   Adler, M.W., Geller, E.B., Chen, X. and Rogers, T.J. (2005) Viewing chemokines as a third major system of communication in the brain. AAPS Journals, 7, E865-E870. doi:10.1208/aapsj070484

[36]   Anderson, J.E. (2000) A role for nitric oxide in muscle repair: Nitric oxide-mediated activation of muscle satellite cells. Molecular Biology of the Cell, 11, 1859-1874. doi:10.1091/mbc.11.5.1859

[37]   Reece, A.S. (2011) Differing age related trajectories of dysfunction in several organ systems in opiate dependence. Aging Clinical and Experimental Research, 24, 85-96.

[38]   Kim, T.W., Alford, D.P., Malabanan, A., Holick, M.F., Samet, J.H. (2006) Low bone density in patients receiving methadone maintenance treatment. Drug and Alcohol Dependence, 85, 258-262. doi:10.1016/j.drugalcdep.2006.05.027

[39]   Reece, A.S. and Davidson, P. (2007) Deficit of circulating stem—Progenitor cells in opiate addiction: A pilot study. Substance Abuse Treatment, Prevention, and Policy, 2, 19-28. doi:10.1186/1747-597X-2-19