OJG  Vol.3 No.4 , August 2013
Porosity Formation and Evolution of the Deeply Buried Lower Triassic Feixianguan Formation, Puguang Gas Field, NE Sichuan Basin, China

The deeply buried shoal dolomite reservoirs of the Lower Triassic Feixianguan Formation, giant Puguang Gas Field, NE Sichuan Basin, are exceptionally porous. The influences of diageneses on pore evolution are studied. Through petrologic investigation, diagenetic phases are divided into four stages, i.e., near-surface, pre-oil window, oil window, and gas window. The Adobe Photoshop system is used to quantify the rock texture components, porosity constitutions and the influences of diageneses on reservoir porosity. Porosity evolution curves are quantitatively recovered. The Feixianguan reservoir porosities are mainly created by early meteoric dissolution, dolomitization, and organic acids dissolution. Dissolution during deep burial is insignificant. Pores are formed in near-surface and pre-oil window stages and effectively preserved till present. This result may be of great significance to the further exploration of deeply buried carbonate reservoirs not only in NE Sichuan Basin, but also around the world.

Cite this paper
X. Zhang, T. Guo, B. Liu, X. Fu and S. Wu, "Porosity Formation and Evolution of the Deeply Buried Lower Triassic Feixianguan Formation, Puguang Gas Field, NE Sichuan Basin, China," Open Journal of Geology, Vol. 3 No. 4, 2013, pp. 300-312. doi: 10.4236/ojg.2013.34035.
[1]   S. N. Ehrenberg, P. H. Nadeau and O. Steen, “Petroleum Reservoir Porosity versus Depth: Influence of Geological Age,” AAPG Bulletin, Vol. 93, No. 10, 2009, pp. 1281-1296. doi:10.1306/06120908163

[2]   Y. S. Ma, X. S. Guo, T. L. Guo, R. Huang, X. Y. Cai, et al., “The Puguang Gas Field: New Giant Discovery in the Mature Sichuan Basin, Southwest China,” AAPG Bulletin, Vol. 91, No. 5, 2007, pp. 627-643. doi:10.1306/11030606062

[3]   Y. S. Ma, S. C. Zhang, T. L. Guo, G. Y. Zhu, X. Y. Cai, et al., “Petroleum Geology of the Puguang Sour Gas Field in the Sichuan Basin, SW China,” Marine and Petroleum Geology, Vol. 25, No. 4-5, 2008, pp. 357-370. doi:10.1016/j.marpetgeo.2008.01.010

[4]   F. Hao, T. L. Guo, Y. M. Zhu, X. Y. Cai, H. Y. Zou, et al., “Evidence for Multiple Stages of Oil Cracking and Thermochemical Sulfate Reduction in the Puguang Gas Field, Sichuan Basin, China,” AAPG Bulletin, Vol. 92, No. 5, 2008, pp. 611-637. doi:10.1306/01210807090

[5]   X. F. Zhang, Z. X. Cai, W. X. Hu and L. Li, “Using Adobe Photoshop to Quantify Rock Textures,” Acta Sedimentologica Sinica, Vol. 27, No. 3, 2009, pp. 7-13.

[6]   P. A. Scholle and D. S. Ulmer-Scholle, “A Color Guide to the Petrography of Carbonate Rocks: Grains, Textures, Porosity, Diagenesis,” AAPG Memoir, Vol. 77, 2003, pp. 1-477.

[7]   L. Van der Plas and A. C. Tobi, “A Chart for Judging the Reliability of Point Counting Results,” American Journal of Science, Vol. 263, No. 1, 1965, pp. 87-90. doi:10.2475/ajs.263.1.87

[8]   R. T. Patterson and E. Fishbein, “Re-examination of the Statistical Method Used to Determine the Number of Point counts Needed for Micropaleontological Quantitative Research,” Journal of Paleontology, Vol. 63, No. 2, 1989, pp. 245-248.

[9]   J. V. White, B. L. Kirkland and J. P. Gournay, “Quantitative Porosity Determination of Thin Sections Using Digitized Images,” Research Methods Papers, 1998, pp. 220-221.

[10]   S. Nishimoto, “Modal Analysis of Granitic Rocks by a Personal Computer Using Image Processing Software ‘Adobe Photoshop TM’,” Ganko, Vol. 91, No. 6, 1996, pp. 235-241.

[11]   M. J. Morse and J. R. Boles, “Can Adobe Photoshop be Used to Quantify Sandstone Porosity?” AAPG Bulletin, Vol. 82, No. 5A, 1998, pp. 854.

[12]   P. W. Choquette and L. C. Pray, “Geologic Nomenclature and Classification of Porosity in Sedimentary Carbonates,” AAPG Bulletin, Vol. 54, No. 2, 1970, pp. 207-250.

[13]   E. Heydari, “The Role of Burial Diagenesis in Hydrocarbon Destruction and H2S Accumulation, Upper Jurassic Smackover Formation, Black Creek Field, Mississippi,” AAPG Bulletin, Vol. 81, No. 1, 1997, pp. 26-45.

[14]   M. M. Savard, B. Beauchamp and J. Veizer, “Significance of Aragonite Cements around Cretaceous Marine Methane Seeps,” Journal of Sedimentary Research, Vol. 66, No. 3, 1996, pp. 430-438.

[15]   N. P. James and P. W. Choquette, “Diagenesis 9. Limestones—The Meteoric Diagenetic Environment,” Geoscience Canada, Vol. 11, No. 4, 1984, pp. 161-194.

[16]   E. Heydari, “Porosity Loss, Fluid Flow, and Mass Transfer in Limestone Reservoirs: Application to the Upper Jurassic Smackover Formation, Mississippi,” AAPG Bulletin, Vol. 84, No. 1, 2000, pp. 100-118.

[17]   L. P. Su, P. Luo, S. R. Hu, Z. Luo, L. H. Liu, et al., “Diagensis of Oolitic Bank of the Feixianguan Formation of Lower Triassic in Luojiazhai Gas Field, Northeastern Sichuan Province,” Journal of Palaeogeography, Vol. 6, No. 2, 2004, pp. 182-190.

[18]   H. Chen, J. C. Tian, X. Zhang, Y. Yang and G. Fu, “Dolomitization Genetic of the Lower Triassic Feixianguan Group Oolitic Beach in Northeast Sichuan Basin,” Natural Gas Industry, Vol. 28, No. 1, 2008, pp. 42-46.

[19]   S. J. Huang, H. R. Qing, C. R. Pei, Z. W. Hu, S. J. Wu, et al., “Strontium Concentration, Isotope Composition and Dolomitization Fluids in the Feixianguan Formation of Triassic, Eastern Sichuan of China,” Acta Petrologica Sinica, Vol. 22, No. 8, 2006, pp. 2123-2132.

[20]   M. S. Gao, R. C. Zheng, H. G. Wen, L. X. Li and H. Li, “Lithological Characteristics of Dolomite in the Lower Triassic Feixianguan Formation of the NE Sichuan Basin, China,” Journal of Chengdu University of Technology (Science & Technology Edition), Vol. 34, No. 3, 2007, pp. 297-304.

[21]   J. Lonnee and H. G. Machel, “Pervasive Dolomitization with Subsequent Hydrothermal Alteration in the Clarke Lake Gas Field, Middle Devonian Slave Point Formation, British Columbia, Canada,” AAPG Bulletin, Vol. 90, No. 11, 2006, pp. 1739-1761. doi:10.1306/03060605069

[22]   X. F. Zhang, B. Liu, Z. X. Cai and W. X. Hu, “Dolomitization and Carbonate Reservoir Formation,” Geolotical Science and Technology Information, Vol. 29, No. 3, 2010, pp. 79-85.

[23]   J. W. Schmoker and R. B. Halley, “Carbonate Porosity versus Depth: A Predictable Relation for South Florida,” AAPG Bulletin, Vol. 66, No. 12, 1982, pp. 2561-2570.

[24]   Y. G. Wang, L. R. Dou, Y. C. Wen, J. Zhang and H. Y. Liu, “Origin of H2S in Triassic Feixianguan Formation Gas Pools, Northeastern Sichuan Basin, China,” Geochimica, Vol. 31, No. 6, 2002, pp. 517-524.

[25]   G. Y. Zhu, S. C. Zhang, Y. B. Liang, Y. S. Ma, J. X. Dai, et al., “Dissolution and Alteration of the Deep Carbonate Reservoirs by Thermochemical Sulfate Reduction: An Important Type of Deep-buried High-quality Carbonate Reservoirs in Sichuan Basin,” Acta Petrologica Sinica, Vol. 22, No. 8, 2006, pp. 2182-2194.

[26]   G. Y. Zhu, S. C. Zhang and Y. S. Ma, “Effectiveness of Thermochemical Sulfate Reduction on Oil and Gas Industry—A H2S Formation Accelerating Development of the Secondary Pores in Reservoirs,” Earth Science Frontiers, Vol. 13, No. 3, 2006, pp. 141-149.

[27]   W. Z. Zhao, Z. C. Wang and Y. G. Wang, “Formation Mechanism of Highly Effective Gas Pools in the Feixianguan Formation in the NE Sichuan Basin,” Geological Review, Vol. 52, No. 5, 2006, pp. 708-718.

[28]   Y. S. Ma, T. L. Guo, G. Y. Zhu, X. Y. Cai and Z. Y. Xie, “Simulated Experiment Evidences of the Corrosion and Reform Actions of H2S to Carbonate Reservoirs: an Example of Feixianguan Formation, East Sichuan,” Chinese Science Bulletin, Vol. 52, Suppl. 1, 2007, pp. 178-183. doi:10.1007/s11434-007-6019-3

[29]   D. M. Zeng, X. Z. Wang and S. Y. Wang, “The Significance of Dissolution in the Development and Evolution of Reservoir in Feixianguan Formation in the Northeast Sichuan Basin,” Journal of Southwest Petroleum University, Vol. 29, No. 1, 2007, pp. 15-18.

[30]   M. J. Xia, R. J. Deng, Y. W. Jiang, J. X. Bi, X. J. Jin, et al., “Exposition on Material Base and Preservation Causes of Oolitic Beach Reservoir in Puguang Gas Field,” Fault-Bolck Oil & Gas Field, Vol. 16, No. 6, 2009, pp. 5-9.

[31]   H. G. Machel, “Bacterial and Thermochemical Sulfate Reduction in Diagenetic Settings—Old and New Insights,” Sedimentary Geology, Vol. 140, No. 1-2, 2001, pp. 143-175. doi:10.1016/S0037-0738(00)00176-7

[32]   R. G. Maliva, T. M. Missimer, E. A. Clayton and J. A. D. Dickson, “Diagenesis and Porosity Preservation in Eocene Microporous Limestones, South Florida, USA,” Sedimentary Geology, Vol. 217, No. 1-4, 2009, pp. 85-94. doi:10.1016/j.sedgeo.2009.03.011

[33]   W. Yang, G. Q. Wei, H. Jin., L. Zhang and J. H. Shen, et al., “Diagenesis and Pore Evolution of the Oolitic Shoal Reservoir in the Feixianguan Formation in Northeastern Sichuan,” Geology in China, Vol. 34, No. 5, 2007, pp. 822-828.

[34]   Y. S. Ma, T. L. Guo, X. F. Zhao and X. Y. Cai, “The Formation Mechanism of High-quality Dolomite Reservoir in the Deep of Puguang Gas Field,” Science in China Series D: Earth Sciences, Vol. 51, Suppl. 1 2008, pp. 53-64. doi:10.1007/s11430-008-5008-y