AM  Vol.4 No.8 A , August 2013
Model-Based Analysis of a Phenol Bio-Oxidation Process by Adhered and Suspended Candida tropicalis
ABSTRACT

Phenol is an important commodity for the chemical industry, used for many processes and deemed to be a major pollutant due its xenobiotic nature and high toxicity. For the purpose of phenol bioremediation a biotechnological set up consisting of a continuous packed column bioreactor with Candida tropicalis adhered onto activated carbon beads has been previously described. In this work, we show how the integration of available experimental data of such a biotechnological set up into a mathematical model, can lead both to a better comprehension of the underlying physiological mechanisms operating in the cell culture, and to the identification of the system parameters optimum performance. The model so constructed describes the dynamics of phenol uptake and growth rates by the adhered and suspended biomass; the lethality rates; the adhered biomass removal into suspension or adherence onto carbon beads rates and the phenol and biomass (adhered and suspended) concentrations. It also serves to identify different physiological states for the adhered and the suspended biomass; its predictions being verified by comparing with experimental observations. Based on the model description, different optimization strategies are proposed, some of which have been experimentally tested, encompassing changes in bioreactor operation conditions, process development and strain development.


Cite this paper
H. Velasco-Bedrán, J. Hormiga, G. Santos and N. Torres, "Model-Based Analysis of a Phenol Bio-Oxidation Process by Adhered and Suspended Candida tropicalis," Applied Mathematics, Vol. 4 No. 8, 2013, pp. 18-26. doi: 10.4236/am.2013.48A004.
References
[1]   Agency for Toxic Substances and Disease Registry, “Toxicological Profile for Phenol,” USA Public Health Service, Department of Health and Human Services, At lanta, 1989.

[2]   W. Jordan, X. Ran, H. Arneveld, O. Gerlich, M. Kleine Boyman and J. Ullrich, “Phenol,” In: L. Pilato, Ed., Ull man’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag, Berlin Heidelberg, 2002.

[3]   A. M. Maszenan, Y. Liu and W. Ng, “Bioremediation of Wastewaters with Recalcitrant Organic Compounds and Metals by Aerobic Beads,” Biotechnology Advances, Vol. 29, No. 1, 2011, pp. 111-123. doi:10.1016/j.biotechadv.2010.09.004

[4]   S. E. Agarry, A. O. Durojaye and B. O. Solomon, “Mi crobial Degradation of Phenols. A Review,” International Journal of Environment and Pollution, Vol. 32, No. 1, 2008, pp. 12-28. doi:10.1504/IJEP.2008.016895

[5]   G. Busca, S. Berardinelli, C. Resini and C. Arrighi, “Te chnologies for the Removal of Phenol from Fluid Streams. A Short Review of Recent Developments,” Journal of Hazardous Materials, Vol. 160, No. 2-3, 2009, pp. 265 288. doi:10.1016/j.jhazmat.2008.03.045

[6]   A. S. Whiteley and M. J. Bailey, “Bacterial Community Structure and Physiological Cell-State within an Indus trial Phenol Bioremediation System,” Applied and Envi ronmental Microbiology, Vol. 66, No. 6, 2000, pp. 2400-2407. doi:10.1128/AEM.66.6.24002407.2000

[7]   M. Mortberg and H. J. Neujahr, “Uptake of Phenol by Trichosporon cutaneum,” Journal of Bacteriology, Vol. 161, No. 2, 1985, pp. 615-619.

[8]   K. H. Hoffman and F. Schauer, “Utilization of Phenol by Hydrocarbon Assimilating Yeasts,” Antonie van Leeu wenhoek, Vol. 54, No. 2, 1988, pp. 179-188. doi:10.1007/BF00419204

[9]   S. S. Adav, M. Y. Chen, D. J. Lee and N. Q. Ren, “Deg radation of Phenol by Aerobic Beads and Isolation of Candida tropicalis,” Biotechnology and Bioengineering, Vol. 96, No. 5, 2007, pp. 844-852. doi:10.1002/bit.21148

[10]   K. T. O’Reilly and R. L. Crawford, “Degradation of Pen tachlorophenol by Polyurethane-Immobilized Flavobacte rium Cells,” Applied and Environmental Microbiology, Vol. 55, No. 9, 1999, p. 2113.

[11]   J. Galíndez-Mayer, J. Ramón-Gallegos, N. Ruiz-Ordaz, C. Juárez-Ramírez, A. Salmerón-Alcocer and H. M. Poggi Varaldo, “Phenol and 4-Chlorophenol Biodegradation by Yeast Candida tropicalis in a Fluidized-Bed Reactor,” Biochemical Engineering Journal, Vol. 38, No. 2, 2008, pp. 147-157. doi:10.1016/j.bej.2007.06.011

[12]   Y. J. Liu, A. N. Zhang and X. C. Wang, “Biodegradation of Phenol by Using Free and Immobilized Cells of Aci netobacter sp X405 and Sphingomonas sp FG03,” Biochemical Engineering Journal, Vol. 44, No. 2-3, 2009, pp. 187-192. doi:10.1016/j.bej.2008.12.001

[13]   G. A. Junter, L. Coquet, S. Vialin and T. Jouenne, “Im mobilized-Cell Physiology: Current Data and the Potenti alities of Proteomics,” Enzyme and Microbial Technology, Vol. 31, No. 2, 2002, pp. 201-212. doi:10.1016/S0141-0229(02)00073-X

[14]   N. Ruiz-Ordaz, E. Hernández-Manzano, J. C. Ruiz-La gunes, E. Cristiani-Urbina and J. Galíndez-Mayer, “Growth Kinetic Model That Describes the Inhibitory and Lytic Effects of Phenol on Candida tropicalis Yeast,” Biotech nology Progress, Vol. 14, No. 6, 1998, pp. 966-969. doi:10.1021/bp980095x

[15]   M. A. Savageau, “Biochemical Systems Analysis. A Stu dy on Design and Function in Molecular Biology,” Ad dison-Wesley Publishing Company, Massachusetts, 2009.

[16]   E. O. Voit, “Computational Analysis of Biochemical Sys tems. A Practical Guide for Biochemists and Molecular Biologists,” Cambridge University Press, Cambridge, 2000.

[17]   J. Ramón-Gallegos, “Degradación de Fenol y 4-Cloro Fenol por Candida tropicalis CC1 Inmovilizada en Car bón Activado Granular en un Reactor Aerobio en Lecho Fluidizado,” M.S. Thesis, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 2008.

[18]   A. G. Moat J. W. Foster and M. P. Spector, “Microbial Physiology,” Wiley-Liss, Inc, New York, 2002. doi:10.1002/0471223867

[19]   D. Ahuatzi-Chacón, G. Ordorica-Morales, N. Ruiz-Ordaz, E. Cristiani-Urbina, C. Juárez-Ramirez and J. Galíndez Mayer, “Kinetic Study of Phenol Hydroxylase and Chate chol 1-2 Dioxygenase Biosynthesis by Candida tropicalis Cells Grown in Different Phenolic Substances,” World Journal of Microbiology and Biotechnology, Vol. 20, No. 7, 2004, pp. 695-702. doi:10.1007/s11274-004-2622-5

[20]   J. Vera, E. Balsa-Canto, P. Wellstead and O. Wolken hauer, “Power-Law Models of Signal Transduction Pathways,” Cellular Signalling, Vol. 19, No. 7, 2007, pp. 1531 1541. doi:10.1016/j.cellsig.2007.01.029

[21]   M. A. Savageau, “Development of Fractal Kinetic Theory for Enzyme-Catalysed Reactions and Implications for the Design of Biochemical Pathways,” Biosystems, Vol. 47, No. 1-2, 1998, pp. 9-36. doi:10.1016/S0303-2647(98)00020-3

[22]   M. R. Atkinson, M. A. Savageau, J. T. Myers and A. J. Ninfa, “Development of Genetic Circuitry Exhibiting Tog gle Switch or Oscillatory Behavior in Escherichia coli,” Cell, Vol. 113, No. 5, 2003, pp. 597-607. doi:10.1016/S0092-8674(03)00346-5

[23]   J. Vera, J. Bachmann, A. C. Pfeifer, V. Becker, J. A. Hor miga, N. V. Torres Darias, J. Timmer, U. Klingmüller and O. Wolkenhauer, “A Systems Biology Approach to Analyse Amplification in the JAK2-STAT5 Signalling Pathway,” BMC Systems Biology, Vol. 2, 2008, p. 38. doi:10.1186/1752-0509-2-38

[24]   J. A. Hormiga, J. Vera, I. Frías and N. Torres, “Growth and Ligninolytic System Production Dynamics of the Phanerochaete chrysosporium Fungus. A Modelling and Optimization Approach,” Journal of Biotechnology, Vol. 137, No. 1-4, 2008, pp. 50-58. doi:10.1016/j.jbiotec.2008.07.1814

[25]   P. K. Polisetty, E. O. Voit and E. P. Gatzke, “Identifica tion of Metabolic System Parameters Using Global Opti mization Methods,” Theoretical Biology and Medical Modelling, Vol. 3, 2006, p. 4. doi:10.1186/1742-4682-3-4

[26]   J. Hormiga, C. González-Alcón, A. Sevilla, M. Cánovas and N. Torres, “Quantitative Analysis of the Dynamic Signalling Pathway Involved in the cAMP Mediated In duction of L-Carnitine Biosynthesis in E. coli,” Molecu lar BioSystems, Vol. 6, No. 4, 2010, pp. 699-710. doi:10.1039/b913063b

[27]   D. D. Siljak, “Nonlinear System the Parameter Analysis and Design,” Wiley, New York, 1969.

[28]   P. M. Frank, “Introduction to System Sensitivity Theory,” Academic Press, New York, 1978.

[29]   G. Inei-Shizukawa, H. Velasco-Bedrán, G. Gutiérrez-López and H. Hernández-Sánchez, “Statistical Approach to Op timization of Ethanol Fermentation by Saccharomyces cerevisiae in the presence of VALFOR® 100 Zeolite NAA,” Revista Mexicana de Ingenieria Quimica, Vol. 8, No. 3, 2009, pp. 265-270.

[30]   C. W. Lin, C. H. Yen and S. L. Tsai, “Biotreatment of Phenol-Contaminated Wastewater in a Spiral Packed-Bed Bioreactor,” Bioprocess and Biosystems Engineering, Vol. 32, No. 5, 2009, pp. 575-580. doi:10.1007/s00449-008-0279-4

[31]   R. Varma and B. G. Gaikwan, “Biodegradation and Phe nol Tolerance in Recycled Cell of Candida tropicalis NCIM 3556 Cells,” International Biodeterioration & Biodegradation, Vol. 63 No. 4, 2009, pp. 539-542

[32]   X. Wang, Z. Gong, P. Li and L. Zhang, “Degradation of Pyrene in Soils by Free and Immobilized Yeasts, Candida tropicalis,” Bulletin of Environmental Contamination and Toxicology, Vol. 78, No. 6, 2007, pp. 522-526. doi:10.1007/s00128-007-9156-0

 
 
Top