Global Existence, Uniqueness of Weak Solutions and Determining Functionals for Nonlinear Wave Equations

Ülkü Dinlemez^{*}

Show more

References

[1] F. Chen, B. Guo and P. Wang, “Long Time Behavior of Strongly Damped Nonlinear Wave Equations,” Journal of Differential Equations, Vol. 147, No. 2, 1998, pp. 231-241. doi:10.1006/jdeq.1998.3447

[2] N. I. Karachalios and N. M. Staurakakis, “Global Existence and Blow up Results for Some Nonlinear Wave Equations on ,” Advances in Differential Equations, Vol. 6, No. 2, 2001, pp. 155-174.

[3] A. O. Celebi and D. Ugurlu, “Determining Functionals for the Strongly Damped Nonlinear Wave Equation,” Journal of Dynamical Systems and Geometric Theories, Vol. 5, No. 2, 2007, pp. 105-116.
doi:10.1080/1726037X.2007.10698530

[4] I. D. Chueshov, “Theory of Functionals That Uniquely Determine Long-Time Dynamics of Infinitive Dimensional Dissipative Systems,” Russian Mathematical Surveys, Vol. 53, No. 4, 1998, pp. 1-58.
doi:10.1070/RM1998v053n04ABEH000057

[5] I. D. Chueshov and V. K. Kalantarov, “Determining Functionals for Nonlinear Damped Wave Equations,” Matematicheskaya Fizika, Analiz, Geometriya, Kharkovskii Matematicheskii Zhurnal, Vol. 8, No. 2, 2001, pp. 215-227.

[6] B. Cockburn, D. A. Jones and E. S. Titi, “Determining Degrees of Freedom for Nonlinear Dissipative Systems,” Comptes Rendus de I’Académie des Sciences Paris Série I Mathématique, Vol. 321, 1995, pp. 563-568.

[7] J. Duan, E. S. Titi and P. Holmes, “Regularity, Approximation and Asymptotic Dynamics for a Generalized Ginzburg-Landou Equation,” Nonlinearty, Vol. 6, No. 6, 1993, pp. 915-933. doi:10.1088/0951-7715/6/6/005

[8] D. Henry, “Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics,” Springer-Verlag, New York, 1981.

[9] P. Massatt, “Limiting Behavior for Strongly Damped Nonlinear Wave Equations,” Journal of Differential Equations, Vol. 48, No. 3, 1983, pp. 334-349.
doi:10.1016/0022-0396(83)90098-0

[10] H. Takeda and S. Yoshikawa, “On the Initial Value Problem of the Semilinear Beam Equation with Weak Damping II: Asymptotic Profiles,” Journal of Differential Equations, Vol. 253, No. 11, 2012, pp. 3061-3080.