OPJ  Vol.3 No.2 B , June 2013
Effects of Quantum well Size Alteration on Excitonic Population Oscillation Slow Light Devices Properties
Abstract: This paper investigates the effects of quantum well size changes on center frequency and slow down factor of an slow light device. In this way, we consider the quantum well size alteration effects on oscillator strength and binding energy of exciton. First, we investigate the variations in oscillator strength of exciton due to different quantum well size. Second, exciton binding energy level shift due to size of quantum well is investigated. According to this analysis, we have developed a new method for tuning slow light device bandwidth center frequency and slow down factor. Analysis and simulation of a basic GaAs/AlGaAs quantum wells optical slow light device based on excitonic population oscillation shows that size of quantum wells could tune both of the frequency properties and slow down factor of an optical slow light device. In our simulation with 34 quantum wells each with the width of 60?, we have received the slow down factor of more than 60,000. These achievements are useful in optical nonlinearity enhancements, all-optical signal processing applications and optical communications.
Cite this paper: H. Kaatuzian, H. Shokri Kojori, A. Zandi and R. Kohandani, "Effects of Quantum well Size Alteration on Excitonic Population Oscillation Slow Light Devices Properties," Optics and Photonics Journal, Vol. 3 No. 2, 2013, pp. 298-304. doi: 10.4236/opj.2013.32B070.

[1]   S. W. Chang, S. L. Chuang, P. C. Ku, C. J.Chang-Hasnian, P. Palinginis and H. L. Wang, “Slow Light Using Excitonic Population Oscillation,” Physical Review B,Voljhjklkjhkj. 70, No. 23, 2004. doi:10.1103/PhysRevB.70.235333

[2]   D. Sun and P. C. Ku, “Slow Light Using P-Doped Semiconductor Heterostructures for High-Band-Width Nonlinear Signal Processing,” Journal of Lightwave Technology, Vol. 26, No. 23, 2008, pp. 3811-3817. doi:10.1109/JLT.2008.2005121

[3]   E. Parra and J. R. Lowell, “Toward Applications of Slow Light Technology,” Optics and Photonics News, Vol. 18, 2007, pp. 40-45. doi:10.1364/OPN.18.11.000040

[4]   M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry and M. O. Scully, “Ultraslowgroup Velocity and Enhanced Nonlinear Optical Effects in A Coherently Driven Hot Atomic Gas,” Physical Review Letters, Vol. 82, 1999, pp. 5229.doi:10.1103/PhysRevLett.82.5229

[5]   B. Pe-sala, Z. Y. Chen, A. V. Uskov and C. Chang-Hasnain, “Experimental Demonstration of Slow and Superluminal Light in Semiconductor Optical Amplifiers,” Optics Express, Vol. 14, 2006, pp. 12968-12975. doi:10.1364/OE.14.012968

[6]   Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. Xu and M. Lipson, “All Optical Slow-Light on A Photonic Chip,” Optics Express, Vol. 14, 2006, pp. 2317-2322.doi:10.1364/OE.14.002317

[7]   Haug and S. W. Koch, “Quantum Theory of the Optical and Electronic Properties of Semiconductors,” 3rd Edition, World Scientific, Singapore, 1994.

[8]   C. J. Chang-Hasnain, P. C. Ku, J. Kim and S. L. Chuang, “Variable Optical Buffer Using Slow Light in Semiconductor Nanostructures,” Proceedings of the IEEE, Vol. 91, No. 11, 2003, pp. 1884-1897. doi:10.1109/JPROC.2003.818335

[9]   G. P. Agrawal, “Population Pulsations and Nondegenerate Four-Wave Mixing in Semiconductor Lasers and Amplifiers,” Journal of the Optical Society of America B, Vol. 5, No. 1, 1988, pp. 147-159. doi:10.1364/JOSAB.5.000147

[10]   B. P. Zhang, S. S. Kano and Y. Shiraki, “Reflectance Study of the Oscillator Strength of Ecitons in Semiconductor Quantum Wells,” Physical Review B, Vol. 50, 1994, pp. 7499-7508.doi:10.1103/PhysRevB.50.7499

[11]   W. T. Masse-link, P. J. Pearah, J. Klem, C. K. Peng and H. Morkoç, “Absorption Coefficients and Exciton Oscillator Strengths in AlGaAs-GaAs Superlattices,” Physical Review B, Vol. 32, 1985, pp. 8027-8034. doi:10.1103/PhysRevB.32.8027

[12]   H. Mathieu, P. Lefebvre and P. Christol, “Simple Analytical Method for Calculating Exciton Binding Energies in Semiconductor Quantum Wells,” Physical Review B, Vol. 46, 1992, pp. 4092-4101. doi:10.1103/PhysRevB.46.4092

[13]   E. Parra and J. R. Lowell, “Toward Applications of Slow Light Technology,” Optics and Photonics News, Vol. 18, 2007, pp. 40-45. doi:10.1364/OPN.18.11.000040

[14]   X. F. He, “Excitons in Anisotropic Solids: The Model of Fractional- Dimensional Space,” Physical Review B, Vol. 43, 1991, pp. 2063-2069.doi:10.1103/PhysRevB.43.2063

[15]   R. S. Knox, “Theory of Excitons,” Academic Press, New York and London, 1963.

[16]   S. W. Chang and S. L. Chuang, “Slow Light Based on Population Oscillation in Quantum Dots with Inhomogeneous Broadening,” Physical Review B, Vol. 72, No. 23, 2005, pp. 235330. doi:10.1103/PhysRevB.72.235330

[17]   C. J. Chang-Hasnain and S. L. Chuang, “Slow and fast light in semiconductor quantum well and quantumdot devices,” Journal of Lightwave Technology, Vol. 24, No. 12, 2006, pp. 4642-4654. doi:10.1109/JLT.2006.885767

[18]   M. Sargent III, “Spectroscopic Techniques Based on Lamb's Laser Theory,” Physics Reports, Vol. 43, No. 5, 1978, pp. 223-265. doi:10.1016/0370-1573(78)90163-1

[19]   H. Kaatuzian, H. S. Kojori and M. Danaei, 7th Int. Symp. High-Capa. Opt. Net. Enb. Tech. (HONET), Cairo, Egypt, 2010, p. 143.

[20]   M. V. Marquezini, J. Tignon, T. Hasche and D. S. Chemla, “Refractive Index and Absorption of GaAs Quantum Wells Across Excitonic Resonances,” Applied Physics Letters, Vol. 73, 1998, pp. 2313. doi:10.1063/1.121808

[21]   C. Tanguy, P. Lefebvre, H. Mathieu and R. J. Elliott, “Analytical Model for the Refractive Index in Quantum Wells Derived from the Complex Dielectric Constant of Wannier Excitons in Noninteger Dimensions,” Journal of Applied Physics, Vol. 82, 1997, pp. 798. doi:10.1063/1.365580

[22]   L. C. Andreani and A. Pasquarello, “Accurate Theory of Exciton in GaAs-GaAlAs Quantum Well,” Physical Review B, Vol. 42, 1990, pp. 8928. doi:10.1103/PhysRevB.42.8928