[1] Via, S. and Lande, R. (1985) Genotype-environment interaction and the evolution of phenotypic plasticity. Evolution, 39, 505-522. doi:10.2307/2408649
[2] Jonas, C.S. and Geber, M.A. (1999) Variation among populations of Clarkia unguiculata (Onagraceae) along altitudinal and latitudinal gradients. American Journal of Botany, 86, 333-343. doi:10.2307/2656755
[3] Bloom, A.J., Chapin, F.S. and Mooney, H.A. (1985) Resource limitation in plants—An economic analogy. Annual Review of Ecology and Systematics, 16, 363-392. doi:10.1146/annurev.ecolsys.16.1.363
[4] McLellan, T. (2000) Geographic variation and plasticity of leaf shape and size in Begonia dregei and B. homonyma (Begoniaceae). Botanical Journal of the Linnean Society, 132, 79-95. doi:10.1006/bojl.1999.0292
[5] Ohsawa, T. and Ide, Y. (2008) Global patterns of genetic variation in plant species along vertical and horizontal gradients on mountains. Global Ecology and Biogeography, 17, 152-163. doi:10.1111/j.1466-8238.2007.00357
[6] Uribe-Salas, D., Sáenz., R.C., González, R.A., Téllez, V.O. and Oyama, K. (2008) Foliar morphological variation in the white oak Quercus rugosa Née (Fagaceae) along a latitudinal gradient in Mexico: Potential implications for management and conservation. Forest Ecology and Management, 256, 2121-2126. doi:10.1016/j.foreco.2008.08.002
[7] Coleman, J.S., McConnaughay, K.D.M. and Ackerly, D.D. (1994) Interpreting phenotypic variation in plants. Trends in Ecology & Evolution (Personal Edition), 9, 187-191. doi:10.1016/0169-5347(94)90087-6
[8] Kundu, S.K. and Tigerstedt, P.M.A. (1997) Geographical variation in seed and seedling traits of Neem (Azadirachta indica A. JUSS.) among ten populations studied in growth chamber. Silvae Genetica, 46, 2-3.
[9] Warren, C.R., Tausz, M. and Adams, M.A. (2005) Does rainfall explain variation in leaf morphology and physiology among populations of red ironbark (Eucalyptus sideroxylon subsp. tricarpa) grown in a common garden? Tree Physiology, 25, 1369-1378. doi:10.1093/treephys/25.11.1369
[10] Gates, D.M., Alderfer, R. and Taylor, E. (1968) Leaf temperatures of desert plants. Science, 159 994-995. doi:10.1126/science.159.3818.994
[11] Cordell, S., Goldstein, G., Mueller-Dombois, D., Webb, D. and Vitousek, P.M. (1998) Physiological and morphological variation in Metrosideros polymorpha, a dominant Hawaiian tree species, along an altitudinal gradient: The role of phenotypic plasticity. Oecologia, 113, 188-196. doi:10.1007/s004420050367
[12] McDonald, P.G., Fonseca, C.R., Overton, J.M. and Westoby, M. (2003) Leaf-size divergence along rainfall and soil-nutrient gradients: Is the method of size reduction common among clades? Functional Ecology, 17, 50-57. doi:10.1046/j.1365-2435.2003.00698.x
[13] Roderick, M.L., Berry, S.L., and Noble, I.R. (2000) A framework for understanding the relationship between environment and vegetation based on the surface area to volume ratio of leaves. Functional Ecology, 14, 423-437. doi:10.1046/j.1365-2435.2000.00438.x
[14] Milla, R. and Reich, P.B. (2007) The scaling of leaf area and mass: The cost of light interception increases with leaf size. Proceedings of the Royal Society B: Biological Sciences, 274, 2109-2115. doi:10.1098/rspb.2007.2003
[15] Donselman, H.M. and Flint, H.L. (1982) Genecology of eastern redbud (Cercis canadensis). Ecology, 63, 962-971. doi:10.2307/1937236
[16] Hilaire, R.S. and Graves, W.R. (1999) Foliar traits of sugar maples and black maples near 43°N latitude in the eastern and central United States. Journal of the American Society for Horticultural Science, 124, 605-611.
[17] Ehleringer, J.R. and Mooney, H.A. (1978) Leaf hairs: Effects on physiological activity and adaptive value to a desert shrub. Oecologia, 37, 183-200. doi:10.1007/BF00344990
[18] Ehleringer, J., Mooney, H.A., Gulmon, S.L. and Rundel, P.W. (1981) Parallel evolution of leaf pubescence in encelia in coastal deserts of North and South America. Oecologia, 49, 38-41. doi:10.1007/BF00376895
[19] Ehleringer, J.R. and Bjorkman, O. (1978) Pubescence and leaf spectral characteristics in a desert shrub, Encelia farinosa. Oecologia, 36, 151-162. doi:10.1007/BF00349805
[20] Picotte, J.J., Rosenthal, D.M., Rhode, J.M. and Cruzan, M.B. (2007) Plastic responses to temporal variation in moisture availability: Consequences for water use efficiency and plant performance. Oecologia, 153, 821-832.
[21] Abrams, M.D. (1990) Adaptations and responses to drought in Quercus species of North America. Tree Physiology, 7, 227-238. doi:10.1093/treephys/7.1-2-3-4.227
[22] Abrams, M.D. (1994) Genotypic and phenotypic variation as stress adaptations in temperate tree species: A review of several case studies. Tree Physiology, 14, 833-842. doi:10.1093/treephys/14.7-8-9.833
[23] Werger, M.J.A. and Ellenbroek, G.A. (1978) Leaf size and leaf consistence of a riverine forest formation along a climatic gradient. Oecologia, 34, 297-308. doi:10.1007/BF00344908
[24] Niinemets, U., Afas, N.A., Cescatti, A., Pellis, A. and Ceulmans, R. (2004) Petiole length and biomass investment in support modify light interception efficiency in dense poplar plantations. Tree Physiology, 24, 141-154. doi:10.1093/treephys/24.2.141
[25] Niinemets, U., Portsmuth, A. and Tobias, M. (2006) Leaf size modifies support biomass distribution among stems, petioles and mid-ribs in temperate plants. New Phytologist, 171, 91-104.
[26] Poorter, L. and Rozendaal, D.M. (2008) Leaf size and leaf display of thirty-eight tropical tree species. Oecologia, 158, 35-46. doi:10.1007/s00442-008-1131-x
[27] Meng, T.T., Ni, J. and Harrison, S.P. (2009) Plant morphometric traits and climate gradients in northern China: A meta-analysis using quadrat and flora data. Annals of Botany, 104, 1217-1229. doi:10.1093/aob/mcp230
[28] Bruschi, P., Grossoni, P. and Bussotti, F. (2003) Within- and among-tree variation in leaf morphology of Quercus petraea (Matt.) Liebl. natural populations. Trees, 17, 164-172.
[29] Calagari, M., Modirrahmati, A.R. and Asadi, F. (2006) Morphological variation in leaf traits of Populus euphratica Oliv. natural populations. International Journal of Agriculture & Biology, 8, 754-758.
[30] Joel, G., Aplet, G. and Vitousek, P.M. (1994) Leaf morphology along environmental gradients in Hawaiian Metrosideros polymorpha. Biotropica, 26, 17-22. doi:10.2307/2389106
[31] Aspelmeier, S. and Leuschner, C. (2006) Genotypic variation in drought response of silver birch (Betula pendula Roth): Leaf and root morphology and carbon partitioning. Trees, 20, 42-52. doi:10.1007/s00468-005-0011-9
[32] Dancik, B.P. and Barnes, B.V. (1974) Leaf diversity in yellow birch (Betula alleghaniensis). Canadian Journal of Botany, 52, 2407-2414. doi:10.1139/b74-312
[33] Senn, J., Hanhimaki, S. and Haukioja, E. (1992) Among tree variation in leaf phenology and morphology and its correlation with insect performance in the mountain birch. Oikos, 63, 215-222. doi:10.2307/3545381
[34] Sharik, T.L. and Barnes, B.V. (1979) Natural variation in morphology among diverse populations of yellow birch (Betula alleghaniensis) and sweet birch (B. lenta). Canadian Journal of Botany, 57, 1932-1939. doi:10.1139/b79-242
[35] Ashton, P.M.S., Plander, L.P., Berlyn, P., Thadani, R. and Cameron, I.R. (1998) Changes in leaf structure in relation to crown position and tree size of Betula papyrifera within fire-origin stands of interior cedar-hemlock. Canadian Journal of Botany, 76, 1180-1187. doi:10.1139/cjb-76-7-1180
[36] Farrar, J.L. (1995) Trees in Canada. Fitzhenry & Whiteside Limited, Markham.
[37] Gurevitch, J. (1992) Sources of variation in leaf shape among two populations of Achillea lanulosa. Genetics, 130, 385-394.
[38] Aas, G. (1993) Taxonomical impact of morphological variation in Quercus robur and Q. petraea: A contribution to the hybrid controversy. Annals of Forest Sciences, 50, 107-113. doi:10.1051/forest:19930709
[39] Bruschi, P., Vendramin, G.G., Bussotti, F.A. and Grossoni, P. (2000) Morphological and molecular differentiation between Quercus petraea (Matt.) liebl. and Quercus pubescens willd. (Fagaceae) in Northern and Central Italy. Annals of Botany, 85, 325-333. doi:10.1006/anbo.1999.1046
[40] Curtu, A.L., Gailing, O., Leinemann, L. and Finkeldey, R. (2007) Genetic variation and differentiation within a natural community of five oak species (Quercus spp.). Plant Biology, 9, 116-126. doi:10.1055/s-2006-924542
[41] Du, J.X., Wang, X.F. and Zhang, G.J. (2007) Leaf shape based plant species recognition. Applied Mathematics and Computation, 185, 883-893. doi:10.1016/j.amc.2006.07.072
[42] Kremer, A., Dupouey, J.L., Deans, J.D., Cottrell, J., Csaikl, U., Finkeldey, R., Espinel, S., Jensen, J., Kleinschmit, J., Dam, B.V., Ducousso, A., Forrest, I., Heredia, U.L.D., Lowe, A.J., Tutkova, M., Munro, R.C., Steinhoff, S. and Badeau, V. (2002) Leaf morphological differentiation between Quercus robur and Quercus petraea is stable across western European mixed oak stands. Annals of Forest Sciences, 59, 777-787. doi:10.1051/forest:2002065
[43] WinFolia (2007) Image analysis for plant science. Regent Instruments Inc., Nepean.
[44] Weather Environment Canada (2010) weather.gc.ca
[45] De Martonne, E. (1926) L’indice d’aridité, Bull, Ass. Geogr. France. In EURAC-Institute for applied remote sensing. (2011) Synthesis report-CLISP-Climate change adaptation by spatial planning in the alpine space.
[46] Migalina, S.V., Ivanova, L.A. and Makhnev, A.K. (2009) Size of the leaf as a marker of birch productivity at a distance from the climatic optimum. Russian Journal of Plant Physiology, 56, 858-862.
[47] Sjors, H. (1974) Ekologisk klimatlara. Vaxtbiologiska Institutionen Uppsala, Uppsala.
[48] Hovenden, M.J. and Schoor, J. (2004) Nature vs nurture in the leaf morphology of Southern beech, Nothofagus cunninghamii (Nothofagaceae). The New Phytologist, 161, 585-594. doi:10.1046/j.1469-8137.2003.00931.x
[49] Teklehaimanot, Z., Lanek, J. and Tomlinson, H.F. (1998) Provenance variation in morphology and leaflet anatomy of Parkia biglobosa and its relation to drought tolerance. Trees, 13, 96-102. doi:10.1007/PL00009742
[50] Hughes, A.R., Stachowicz, J.J. and Williams, S.L. (2009) Morphological and physiological variation among seagrass (Zostera marina) genotypes. Oecologia, 159, 725-733. doi:10.1007/s00442-008-1251-3
[51] Wilson, P.J., Thompson, K.E.N. and Hodgson, J.G. (1999) Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist, 143, 155-162. doi:10.1046/j.1469-8137.1999.00427.x
[52] Lovett, P.N. and Haq, N. (2000) Diversity of the sheanut tree (Vitellaria paradoxa C.F. Gaertn.) in Ghana. Genetic Resources and Crop Evolution, 47, 293-304. doi:10.1023/A:1008710331325
[53] Wright, I.J. and Westoby, M. (1999) Differences in seedling growth behaviour among species: Trait correlations across species, and trait shifts along nutrient compared to rainfall gradients. Journal of Ecology, 87, 85-97. doi:10.1046/j.1365-2745.1999.00330.x
[54] Yates, M.J., Anthony Verboom, G., Rebelo, A.G. and Cramer, M.D. (2010) Ecophysiological significance of leaf size variation in Proteaceae from the Cape Floristic Region. Functional Ecology, 24, 485-492. doi:10.1111/j.1365-2435.2009.01678.x
[55] Fonseca, C.R., Overton, J.M., Collins, B. and Westoby, M. (2000) Shifts in trait-combinations along rainfall and phosphorus gradients. Journal of Ecology, 88, 964-977. doi:10.1046/j.1365-2745.2000.00506.x
[56] Reich, P.B., Ellsworth, D.S. and Walters, M.B. (1998) Leaf structure (specific leaf area) modulates photosynthesis-nitrogen relations: Evidence from within and across species and functional groups. Functional Ecology, 12, 948-958. doi:10.1046/j.1365-2435.1998.00274.x
[57] Xu, Z.Z. and Zhou, G.S. (2006) Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis. Planta, 224, 1080-1090. doi:10.1007/s00425-006-0281-5
[58] Tomlinson, K.W., Poorter, L., Sterck, F.J., Borghetti, F., Ward, D., de Bie, S. and van Langevelde, F. (2013) Leaf adaptations of evergreen and deciduous trees of semi-arid and humid savannas on three continents. Journal of Ecogy, 101, 430-440. doi:10.1111/1365-2745.12056
[59] Farley, R.A. and McNeilly, T. (2000) Diversity and divergence in Cistus salvifolius (L.) populations from contrasting habitats. Hereditas, 132, 183-192.
[60] Johnson, H.B. (1975) Plant pubescence: An ecological perspective. Botanical Review, 41, 233-258. doi:10.1007/BF02860838
[61] Dudley, S.A. (1996) Differing selection on plant physiological traits in response to environmental water availability: A test of adaptive hypotheses. Evolution, 50, 92-102. doi:10.2307/2410783
[62] Givnish, T.J. (1979) On the adaptive significance of leaf form. In: Solbrig, O.T., Jain, S., Johnson, G.B. and Raven, P.H., Eds., Topics in Plant Population Biology, Columbia University Press, New York, 375-407.
[63] Roy, B.A., Stanton, M.L. and Eppley, S.M. (1999) Effects of environmental stress on leaf hair density and consequences for selection. Journal of Evolutionary Biology, 12, 1089-1103.
[64] Ehleringer, J. (1982) The Influence of water stress and temperature on leaf pubescence development in Encelia farinosa. American Journal of Botany, 69, 670-675. doi:10.2307/2442956
[65] Schuepp, P.H. (1993) Tansley review No. 59. Leaf boundary layers. New Phytologist, 125, 477-507. doi:10.2307/2442956
[66] Pearce, D.W., Millard, S., Bray, D.F. and Rood, S.B. (2006) Stomatal characteristics of riparian poplar species in a semi-arid environment. Tree Physiology, 26, 211-218. doi:10.1093/treephys/26.2.211