APD  Vol.2 No.3 , August 2013
Biological sources of L-DOPA: An alternative approach
Abstract: Parkinson’s disease was first formally identified by British physician James Parkinson in 1817 as “The Shaking Palsy”. L-DOPA (3,4-dihydroxy-phenyl-L-alanine) has been considered as a gold-standard treatment for Parkinson’s disease. The world market for L-DOPA is about 250 t/year and the total market volume is about $101 billion per year. The present review summarizes the different biological sources for the production of L-DOPA. The process for L-DOPA production from different biological sources has advantages over the chemical methods such as, enantiometrically pure L-DOPA, less incubation time and cost effective method. L-DOPA is found naturally in certain plant foods, particularly broad beans which found to replenish brain levels of L-DOPA even more quickly, and for longer periods, than conventional medication.
Cite this paper: A. Patil, S. , Apine, O. , Surwase, S. and Jadhav, J. (2013) Biological sources of L-DOPA: An alternative approach. Advances in Parkinson's Disease, 2, 81-87. doi: 10.4236/apd.2013.23016.

[1]   National Human Genome Research Institute (1998) Parkinson’s disease—Research news.

[2]   Kofman, O. (1971) Treatment of Parkinson’s disease with L-DOPA: A current appraisal. The Canadian Medical Association Journal Le Journal de l’Association Medicale Canadienne, 104, 483-487.

[3]   Bhatnagar, S. and Andy, O. (1995) Neuroscience for the study of communicative disorders. Williams and Wilkins, Baltimore.

[4]   Brodal, P. (1998) The central nervous system: Structure and function. 2nd Edition, Oxford University Press, New York.

[5]   Lang, A. and Lozano, A. (1998) Parkinson’s disease: First of two parts. The New England Journal of Medicine, 339, 1044-1053. doi:10.1056/NEJM199810083391506

[6]   Davie, C. (2008) A review of Parkinson’s disease. British Medical Bulletin, 86, 109-127. doi:10.1093/bmb/ldn013

[7]   Surwase, S.N. and Jadhav J.P. (2010) Bioconversion of L-tyrosine to L-DOPA by a novel bacterium Bacillus sp. JPJ. Amino Acids, 41, 495-506. doi:10.1007/s00726-010-0768-z

[8]   Knowles, W. (2003) Asymmetric hydrogenations. Advanced Synthesis and Catalysis, 345, 3-13. doi:10.1002/adsc.200390028

[9]   Valdes, R., Puzer, L., Gomes, M., Marques, C., Aranda, D., Bastos, M., Gemal, A., Antunes, O., et al. (2004) Production of L-DOPA under heterogeneous asymmetric catalysis. Catalysis Communications, 5, 631-634. doi:10.1016/j.catcom.2004.07.018

[10]   Lee, S.G., Rao, H.S., Hong, S.P., Kim, E.H., Sung, M.H., et al. (1996) Production of L-dopa by thermostable tyrosine phenol-lyase of a thermophilic Symbiobacterium spp. over expressed in recombinant Escherichia coli. Journal of Microbiology and Biotechnology, 6, 98-102.

[11]   Knowles, W.S. (2001) Nobel lecture asymmetric hydrogenations. Monsanto Co., St. Louis.

[12]   Blaser, H.U., Spindler, F. and Studer, M. (2001) Enantioselective catalysis in fine chemicals production. Applied Catalysis A: General, 221, 119-143. doi:10.1016/S0926-860X(01)00801-8

[13]   Claus, H. and Decker, H. (2006) Bacterial tyrosinases. Systematic and Applied Microbiology, 29, 3-14. doi:10.1016/j.syapm.2005.07.012

[14]   Graeme, E., Hua, T., Courtney, H., Jun, M., Suzanne, R., Vincent, J. et al. (2003) Tyrosinase: A developmentally specific major determinant of peripheral dopamine. The Federation of American Societies for Experimental Biology, 17, 1248-1255. doi:10.1096/fj.02-0736com

[15]   Seo, S.Y., Sharma, V.K., Sharma, N., et al. (2003) Mushroom tyrosinase: Recent prospects. Journal of Agricultural and Food Chemistry, 51, 2837-2853. doi:10.1021/jf020826f

[16]   Para, G. and Baratti, G. (1988) Synthesis of L-dopa by Escherichia inwrmedia cells immobilized in a polyacrylamide gel. Applied Microbiology Biotechnology, 28, 222-228. doi:10.1007/BF00250445

[17]   Para, G. and Baratti, G. (1988) Synthesis of L-Dopa by Escherichia intermedia cells immobilized in a carrageenan gel. Enzyme and Microbial Technology, 10, 729-735. doi:10.1016/0141-0229(88)90117-2

[18]   Pialis, P., Maria, C., Hamann, J., Saville, B.A., et al. (1996) L-DOPA production from tyrosinase immobilized on nylon 6,6. Biotechnology and Bioengineering, 51, 141-147. doi:10.1002/(SICI)1097-0290(19960720)51:2<141::AID-BIT2>3.0.CO;2-J

[19]   Gabriela, M.J., Tito, M.A. and Denise, M.G. (2000) L-DOPA production by immobilized tyrosinase. Applied Biochemistry and Biotechnology, 84, 791-800.

[20]   Seetharam, G. and Saville, B.A. (2002) L-DOPA production from tyrosinase immobilized on zeolite. Enzyme and Microbial Technology, 31, 747-753. doi:10.1016/S0141-0229(02)00182-5

[21]   Ho, P.Y., Chiou, M.S. and Chao, A.C. (2003) Production of L-DOPA by tyrosinase immobilized on modified polystyrene. Applied Biochemistry and Biotechnology, 111, 139-152. doi:10.1385/ABAB:111:3:139

[22]   Selma, A., Esra, C., Emine, B., Ulku, M., et al. (2007) Production of L-DOPA using Cu-alginate gel immobilized tyrosinase in a batch and packed bed reactor. Enzyme and Microbial Technology, 40, 683-687. doi:10.1016/j.enzmictec.2006.05.031

[23]   Norouzian, D., Akbarzadeh, A., Mirdamadi, S., Khetami, S., Farhanghi, A., et al. (2007) Immobilization of mushroom tyrosinase by different methods in order to transform L-tyrosine to L-3,4-dihydroxyphenylalanine (L-dopa). Biotechnology, 6, 436-439. doi:10.3923/biotech.2007.436.439

[24]   Haneda, K., Watanabe, S. and Takeda, I. (1971) Synthesis of 3,4-dihydroxyphenyl L-alanine from L-tyrosine by microorganisms. Applied Microbiology, 22, 721-722.

[25]   Loganathan, P. (1998) Production of DL-DOPA from acellular slime-mould Stemonitis herbatica. Bioprocess Engineering, 18, 307-308.

[26]   Ali, S., Haq, I. and Qadeer, M.A. (2002) Novel technique for microbial production of 3,4-dihydroxyphenyl Lalanine by a mutant strain of Aspergillus oryzae. Electronic Journal of Biotechnology, 5, 118-124. doi:10.2225/vol5-issue2-fulltext-2

[27]   Haq, I. Ali, S. and Qadeer, M.A. (2002) Biosynthesis of L-DOPA by Aspergillus oryzae. Bioresource Technology, 85, 25-29. doi:10.1016/S0960-8524(02)00060-3

[28]   Haq, I. and Ali, S. (2002) Microbiological transformation of L-tyrosine to 3,4-dihydroxyphenyl L-alanine (L-Dopa) by a mutant strain of Aspergillus oryzae UV-7. Current Microbiology, 45, 88-93. doi:10.1007/s00284-001-0080-y

[29]   Haq, I., Ali, S., Qadeer, M.A., Iqbal, J., et al. (2003) Inducive effect of cresoquinone on microbiological transformation of L-tyrosine to 3,4-dihydroxyphenyl L-alanine by Aspergillus oryzae NG-11P1. Applied Microbiology Biotechnology, 60, 696-699.

[30]   Ali, S., Haq, I., Qadeer, M.A., Rajoka M.I., et al. (2005) Double mutant of Aspergillus oryzae for improved production of L-dopa (3,4-dihydroxyphenyl-L-alanine) from L-tyrosine. Biotechnology and Applied Biochemistry, 42, 143-149. doi:10.1042/BA20040180

[31]   Ali, S. and Haq, I. (2005) Innovative effect of illite on improved microbiological conversion of L-tyrosine to 3,4-dihydroxyphenyl L-alanine (L-DOPA) by Aspergillus oryzae ME2 under acidic reaction conditions. Current Microbiology, 53, 351-357.

[32]   Ali, S. and Haq, I. (2006) Kinetic basis of celite (CM 2:1) addition on the biosynthesis of 3,4-dihydroxyphenyl-L-alanine (L-DOPA) by Aspergillus oryzae ME2 using L-tyrosine as a basal substrate. World Journal of Microbiology & Biotechnology, 22, 347-353. doi:10.1007/s11274-005-9040-1

[33]   Haq, I. and Ali, S. (2006) Mutation of Aspergillus oryzae for improved production of 3,4-dihydroxyphenyl L-alanine (L-DOPA) from L-tyrosine. Brazilian Journal of Microbiology, 37, 78-86. doi:10.1590/S1517-83822006000100015

[34]   Ali, S. and Haq, I. (2007) Technique for improved production of 3,4-dihydroxyphenyl L-alanine by Aspergillus oryzae. Pakistan Journal of Botany, 39, 623-627.

[35]   Krishnaveni, R., Rathod, V., Thakur M.S., Neelgund, Y. F., et al. (2009) Transformation of L-Tyrosine to L-Dopa by a novel fungus, Acremonium rutilum, under submerged fermentation. Current Microbiology, 58, 122-128. doi:10.1007/s00284-008-9287-5

[36]   Ali, S. and Haq, I. (2010) Production of 3,4-dihydroxy L-phenylalanine by a newly isolated Aspergillus niger and parameter significance analysis by Plackett-Burman design. BMC Biotechnology, 10, 86. doi:10.1186/1472-6750-10-86

[37]   Sukumaram, C.P., Singh, D.V., Khedkar, P.D., Mahadevan, P. R. (1979) An actinomycete producing L-3,4-dihydroxyphenylalanine from L-tyrosine. Journal of Bioscience, 1, 236-239. doi:10.1007/BF02706335

[38]   Ali, S., Shultz, J.L. and Qadeer, M.A. (2007) High performance microbiological transformation of L-tyrosine to L-dopa by Yarrowia lipolytica NRRL-143. BMC Biotechnology, 7, 50. doi:10.1186/1472-6750-7-50

[39]   Doaa, A.R., Magda, A. and Bendary, E.L. (2010) Production of 3,4-dihydroxyphenyl-L-alanine (L-DOPA) by Egyptian halophilic black yeast. World Journal of Microbiology Biotechnology, 27, 39-46.

[40]   Yoshida, H., Tanaka, Y. and Nakayama, K. (1973) Production of 3,4-dihydroxyphenyl-L-alanine (L-DOPA) and its derivatives by Vibrio tyrosinaticus. Agricultural and Biological Chemistry, 37, 2121-2126. doi:10.1271/bbb1961.37.2121

[41]   Yoshida, H., Tanaka, Y. and Nakayama, K. (1974) Production of 3,4-dihydroxyphenyl-L-alanine (L-DOPA) by Pseudomonas melanogenum. Agricultural and Biological Chemistry, 37, 2121-2126. doi:10.1271/bbb1961.37.2121

[42]   Lee, J.Y. and Xun, L. (1998) Novel biological process for L-DOPA production from L-tyrosine by p-hydroxy-phenylacetate 3-hydroxylase. Biotechnology Letters, 20, 479-482. doi:10.1023/A:1005440229420

[43]   Surwase, S.N., Patil, S.A., Apine, O.A., Jadhav, J.P., et al. (2012) Efficient microbial conversion of L-tyrosine to L-DOPA by Brevundimonas sp. SGJ. Applied Biochemistry and Biotechnology, 5, 1015-1028. doi:10.1007/s12010-012-9564-4

[44]   Surwase, S.N., Patil, S.A., Jadhav, S.B., Jadhav, J.P., et al. (2012) Optimization of L-DOPA production by Brevundimonas sp. SGJ using response surface methodology. Microbial Biotechnology, 5, 731-737. doi:10.1111/j.1751-7915.2012.00363.x

[45]   Takashi, K., Takane, K., Hideyuki, S., Hidetsugu, N., Kenzo, Y., Hidehiko, K., et al. (2005) Effective production of 3,4-dihydroxyphenyl-L-alanine (L-DOPA) with Erwinia herbicola cells carrying a mutant transcriptional regulator TyrR. Journal of Biotechnology, 115, 303-306. doi:10.1016/j.jbiotec.2004.08.016

[46]   Pieris, N., Jansz, E.R. and Dharmadara, H.M. (1980) Studies on Mucuna species of shri lanka the L-DOPA content of seeds. Journal of the National Science Council of Sri Lanka, 8, 35-40.

[47]   Chattopadhyay, S., Datta, S.K. and Mahato, S.B. (1994) Production of L-DOPA from cell suspension culture of Mucuna pruriens. Plant Cell Reports, 13, 519-522. doi:10.1007/BF00232948

[48]   Teixeira, A.A., Rich, E.C. and Szabo, N.J. (2003) Water extraction of L-DOPA from Mucuna bean. Tropical and Subtropical Agroecosystems, 1, 159-171.

[49]   Egounlety, M. (2003) Processing of velvet bean (Mucuna pruriens var utilis) by fermentation. Tropical and Subtropical Agroecosystems, 1, 173-181.

[50]   Chikagwa-Malunga, S.K., Adesogan, A.T., Salawu, M.B., Szabo, N.J., Littell, R.C., Kim S.C., Phatak, S.C., et al. (2009) Nutritional characterization of Mucuna pruiriens In vitro ruminal fluid fermentability of Mucuna pruriens, Mucuna L-DOPA and soybean meal incubated with or without L-DOPA. Animal Feed Science and Technology, 148, 51-67. doi:10.1016/j.anifeedsci.2008.03.005

[51]   Inamdar, S., Joshi, S., Jadhav, J., Bapat, V. (2012) Innovative use of intact seeds of Mucuna monosperma wight for improved yield of L-DOPA. Natural Products and Bioprospect, 2, 16-20. doi:10.1007/s13659-011-0051-3

[52]   Shetty, P., Attallah, M.T., Shetty, K. (2001) Enhancement of total phenolic, L-DOPA and proline content in germinating fava bean (Vicia faba) in response to bacterial elicitors. Food Biotechnology, 15, 47-67. doi:10.1081/FBT-100103894

[53]   Bapat, V.A., Suprasanna, P., Ganapati, T.R., Rao, P.S., et al. (2000) In vitro production of L-dopa in tissue cultures of banana. Pharmaceutical Biology, 38, 271-273.

[54]   Huang, S.Y. and Hu, J.J. (2001) Effects of gas composition on the cell growth and L-DOPA production in the suspension culture of Stizolobium hassjao. Journal of the Chinese Institute of Chemical Engineers, 32, 1-11.

[55]   Sung, L.S. and Huang, S.Y. (2006) Lateral root bridging as a strategy to enhance L-DOPA production in Stizolobium hassjoo hairy root cultures by using a mesh hindrance mist trickling bioreactor. Biotechnology and Bioengineering, 94, 441-447. doi:10.1002/bit.20804

[56]   Rani, N., Joy, B. and Abraham, E. (2007) Cell suspension cultures of Portulaca grandiflora as potent catalysts for biotransformation of L-tyrosine into L-DOPA, an anti-Parkinson’s drug. Pharmaceutical Biology, 45, 48-53. doi:10.1080/13880200601026341