WJNS  Vol.3 No.3 , August 2013
Visuo-motor related time analysis using electroencephalograms

The objective of the present study was to assess the relationship of response time and peak latency of P300 with a simple-reaction task. Seven male subjects who were experienced players in decision-making sports were included. Two main findings were noted. First, the P300 latencies of Fz and Pz were correlated with visuo-motor related time. Second, in terms of latencies of visual evoked potentials, the correlations were observed only between Oz-P2 latency and visuo-motor related time. These results suggest that the length of visuo-motor related time is related to the processing involved in the higher order brain site involving specific processing in the visual cortex.

Cite this paper
Yotani, K. , Tamaki, H. , Nakamoto, H. , Yuki, A. , Kirimoto, H. , Kitada, K. , Ogita, F. and Mori, S. (2013) Visuo-motor related time analysis using electroencephalograms. World Journal of Neuroscience, 3, 142-146. doi: 10.4236/wjns.2013.33018.
[1]   Yotani, K., Tamaki, H., Yuki, A., Kirimoto, H., Kitada, K., Ogita, F. and Takekura, H. (2011) Response training shortens visuo-motor related time in athletes. International Journal of Sports Medicine, 32, 586-590. doi:10.1055/s-0031-1275299

[2]   Iacoboni, M. (2006) Visuo-motor integration and control in the human posterior parietal cortex: Evidence from TMS and fMRI. Neuropsychologia, 44, 2691-2699. doi:10.1016/j.neuropsychologia.2006.04.029

[3]   Ford, J.M., Pfefferbaum, A. and Kopell, B.S. (1982) Effects of perceptual and cognitive difficulty on P3 and RT in young and older adults. Electroencephalography and Clinical Neurophysiology, 54, 311-321. doi:10.1016/0013-4694(82)90180-8

[4]   Goodin, D.S. and Aminoff, M.J. (1984) The relationship between the evoked potential and brain events in sensory discrimination and motor response. Brain, 107, 241-251. doi:10.1093/brain/107.1.241

[5]   Hohnsbein, J., Falkenstein, M., Hoormann, J. and Blanke, L. (1991) Effects of crossmodal divided attention on late ERP components. I. Simple and choice reaction tasks. Electroencephalography and Clinical Neurophysiology, 78, 438-446. doi:10.1016/0013-4694(91)90061-8

[6]   Nishihira, Y., Yoshida, Y., Hatta, A., Kaneda, T., Kamijo, K., Higashiura, T., Kim, S.R., Yoshida, M. and Kim, B.J. (2005) Effects of task-responding manipulations on P300 and S-R compatibility. Advances in Exercise and Sports Physiology, 11, 119-124.

[7]   Duncan-Johnson, C.C. and Donchin, E. (1982) The P300 component of the event-related brain potential as an index of information processing. Biological Psychology, 14, 1-52. doi:10.1016/0301-0511(82)90016-3

[8]   Bledowski, C., Prvulovic, D., Hoechstetter, K., Scherg, M., Wibral, M., Goebel, R. and Linden, D.E. (2004) Localizing P300 generators in visual target and distractor processing: A combined event-related potential and functional magnetic resonance imaging study. The Journal of Neuroscience, 24, 9353-9360. doi:10.1523/JNEUROSCI.1897-04.2004

[9]   Donchin, E. and Coles, M.G. (1988) Is the P300 component a manifestation of context updating? Behavioral and Brain Sciences, 11, 357-374. doi:10.1017/S0140525X00058027

[10]   Kok, A. (2001) On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology, 38, 557-577. doi:10.1017/S0048577201990559

[11]   Kutas, M., McCarthy, G. and Donchin, E. (1977) Augmenting mental chronometry: The P300 as a measure of stimulus evaluation time. Science, 197, 792-795. doi:10.1126/science.887923

[12]   Delpont, E., Dolisi, C., Suisse, G., Bodino, G. and Gastaud, M. (1991) Visual evoked potentials: Differences related to physical activity. International Journal of Sports Medicine, 12, 293-298. doi:10.1055/s-2007-1024684

[13]   Ozmerdivenli, R., Bulut, S., Bayar, H., Karacabey, K., Ciloglu, F., Peker, I. and Tan, U. (2005) Effects of exercise on visual evoked potentials. International Journal of Neuroscience, 115, 1043-1050. doi:10.1080/00207450590898481

[14]   Taddei, F., Viggiano, M.P. and Mecacci, L. (1991) Pattern reversal visual evoked potentials in fencers. International Journal of Psychophysiology, 11, 257-260. doi:10.1016/0167-8760(91)90019-T

[15]   Hayashi, S., Hasegawa, Y., Yahagi, S. and Kasai, T. (2001) Modulation of motor evoked potentials induced by motor imagery: An analysis of trained and untrained Kendoists using a transcranial magnetic stimulation (TMS) method. Japan Journal of Physical Education, Health and Sport Sciences, 46, 47-59.

[16]   Caramia, M.D., Desiato, M.T., Cicinelli, P., Iani, C. and Rossini, P.M. (1993) Latency jump of “relaxed” versus “contracted” motor evoked potentials as a marker of cortico-spinal maturation. Electroencephalography and Clinical Neurophysiology, 89, 61-66. doi:10.1016/0168-5597(93)90086-5

[17]   Syrjala, P., Luukinen, H. and Tolonen, U. (2000) Motor evoked potentials of subjects over 70 years of age with and without recurrent falls. Clinical Neurophysiology, 111, 482-488. doi:10.1016/S1388-2457(99)00263-1

[18]   Hoffman, L.D. and Polich, J. (1999) P300, handedness, and corpus callosal size: Gender, modality, and task. International Journal of Psychophysiology, 331, 163-174. doi:10.1016/S0167-8760(98)00050-6

[19]   Numata, K., Nakajima, Y. and Shimizu, S. (1998) Right hemisphere dominance for figure recognition: A study of event related potentials to lateralized projection. Journal of the Japanese Physical Therapy Association, 25, 1-5.

[20]   Astafiev, S.V., Shulman, G.L., Stanley, C.M., Snyder, A.Z., Van Essen, D.C. and Corbetta, M. (2003) Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing. The Journal of Neuroscience, 23, 4689-4699.

[21]   Callaway, E.M. (1998) Local circuits in primary visual cortex of the macaque monkey. Annual Review of Neuroscience, 21, 47-74. doi:10.1146/annurev.neuro.21.1.47

[22]   Yoshimura, H., Mashiyama, Y., Kaneyama, K., Nagao, T. and Segami, N. (2007) Opening of shortcut circuits between visual and retrosplenial granular cortices of rats. Neuroreport, 18, 1315-1318. doi:10.1097/WNR.0b013e32827420fa

[23]   Mehta, A.D., Ulbert, I. and Schroeder, C.E. (2000) Intermodal selective attention in monkeys. II: Physiological mechanisms of modulation. Cerebral Cortex, 10, 359-370. doi:10.1093/cercor/10.4.359

[24]   Raiguel, S.E., Lagae, L., Gulyàs, B. and Orban, G.A. (1989) Response latencies of visual cells in macaque areas V1, V2 and V5. Brain Research, 493, 155-159. doi:10.1016/0006-8993(89)91010-X