Back
 OJE  Vol.3 No.3 , July 2013
Effectivity of arbuscular mycorrhizal fungi collected from reclaimed mine soil and tallgrass prairie
Abstract: We examined suitability of arbuscular mycorrhizal fungi (AMF) associated with cool-season nonnative forages on reclaimed surface-mined land in southeast Ohio for establishment of native warm-season grasses. The goal of establishing these grasses is to diversify a post-reclamation landscape that is incapable of supporting native forest species. A 16-week glasshouse study compared AMF from a 30-year reclaimed mine soil (WL) with AMF from native Ohio tallgrass prairie soil (CL). Four native grasses were examined from seedling through 16 weeks of growth. Comparisons were made between CL and WL AMF on colonized (+AMF) and non-colonized plants (–AMF) at three levels of soil phosphorus (P). Leaves were counted at 4 week intervals. Shoot and root biomass and percent AMF root colonization were measured at termination. We found no difference between WL and CL AMF. Added soil P did not reduce AMF colonization, but did reduce AMF efficacy. Big bluestem (Andropogon gerardii Vitman), Indiangrass (Sorghastrum nutans (L.) Nash), and tall dropseed (Sporobolus asper (Michx.) Kunth) benefited from AMF only at low soil P while slender wheatgrass (Elymus trachycaulus (Link) Gould ex Shinners) exhibited no benefit. Establishment of tallgrass prairie dominants big blue-stem and Indiangrass would be supported by the mine soil AMF. It appears that the non-native forage species have supported AMF equally functional as AMF from a regionally native tallgrass prairie. Tall dropseed and slender wheatgrass were found to be less dependent on AMF than big bluestem or Indiangrass and thus would be useful in areas with little or no AMF inoculum.
Cite this paper: Thorne, M. , Rhodes, L. and Cardina, J. (2013) Effectivity of arbuscular mycorrhizal fungi collected from reclaimed mine soil and tallgrass prairie. Open Journal of Ecology, 3, 224-233. doi: 10.4236/oje.2013.33026.
References

[1]   Gould, A.B. and Liberta, A.E. (1981) Effects of topsoil storage during surface mining on the viability of vesicular-arbuscular mycorrhiza. Mycologia, 73, 914-921. doi:10.2307/3759802

[2]   Waaland, M.E. and Allen, E.B. (1987) Relationship between VA mycorrhizal fungi and plant cover following surface mining in Wyoming. Journal of Range Management, 40, 271-276. doi:10.2307/3899096

[3]   Lambert, D.H. and Cole Jr., H. (1980) Effects of mycorrhizae on establishment and performance of forage species in mine spoil. Agronomy Journal, 72, 257-260. doi:10.2134/agronj1980.00021962007200020003x

[4]   Allen, E.B. (1989) The restoration of disturbed arid landscapes with special reference to mycorrhizal fungi. Journal of Arid Environments, 17, 279-286.

[5]   Hetrick, B.A.D., Wilson, G.W.T. and Figge, D.A.H. (1994) The influence of mycorrhizal symbiosis and fertilizer amendments on establishment of vegetation in heavy metal mine spoil. Environmental Pollution, 86, 171-179. doi:10.1016/0269-7491(94)90188-0

[6]   Gerdemann, J.W. (1968) Vesicular-arbuscular mycorrhiza and plant growth. Annual Review of Phytopathology, 6, 397-418. doi:10.1146/annurev.py.06.090168.002145

[7]   Rhodes, L.H. and Gerdemann, J.W. (1975) Phosphate uptake zones of mycorrhizal and non-mycorrhizal onions. New Phytologist, 75, 555-561. doi:10.1111/j.1469-8137.1975.tb01419.x

[8]   Barrow, N.J., Malajczuk, N. and Shaw, T.C. (1977) A direct test of the ability of vesicular-arbuscular mycorrhizae to help plants take up fixed soil phosphate. New Phytologist, 78, 269-276. doi:10.1111/j.1469-8137.1977.tb04830.x

[9]   Smith, F.A. and Smith, S.E. (1997) Structural diversity in (vesicular)-arbuscular mycorrhizal symbiosis. New Phytologist, 137, 373-388. doi:10.1046/j.1469-8137.1997.00848.x

[10]   Cavagnaro, T.R., Smith, F.A., Smith, S.E. and Jakobsen, I. (2005) Functional diversity in arbuscular mycorrhizas: exploitation of soil patches with different phosphate enrichment differs among fungal species. Plant Cell and Environment, 28, 642-650. doi:10.1111/j.1365-3040.2005.01310.x

[11]   Brejda, J.J., Yocom, D.H., Moser, L.E. and Waller, S.S. (1993) Dependence of 3 Nebraska Sandhills warm-season grasses on vesicular-arbuscular mycorrhizae. Journal of Range Management, 46, 14-20. doi:10.2307/4002441

[12]   Janos, D.P. (1980) Mycorrhizae influence tropical succession. Biotropica, 12, 56-64. doi:10.2307/2388157

[13]   Allen, E.B. and Allen, M.F. (1984) Competition between plants of different successional stages: Mycorrhizae as regulators. Canadian Journal of Botany, 62, 2625-2629. doi:10.1139/b84-356

[14]   Crowell, H.F. and Boerner, R.E.J. (1988) Influences of mycorrhizae and phosphorus on belowground competetion between two old-field annuals. Environmental and Experimental Botany, 28, 381-392. doi:10.1016/0098-8472(88)90063-9

[15]   Gange, A.C., Brown, V.K. and Farmer, L.M. (1990) A test of mycorrhizal benefit in an early successional plant community. New Phytologist, 115, 85-91. doi:10.1111/j.1469-8137.1990.tb00925.x

[16]   Allen, M.F. and Allen, E.B. (1992) Mycorrhizae and plant community development: Mechanisms and patterns. In: Carrol, G.C. and Wicklow, D.T., Eds., The Fungal Community: Its Organization and Role in the Ecosystem. Mycology Series 9, Marcel Dekker, Inc., New York.

[17]   Gange, A.C., Brown, V.K. and Sinclair, G.S. (1993) Vesicular-arbuscular mycorrhizal fungi: A determinant of plant community structure in early succession. Functional Ecology, 7, 616-622. doi:10.2307/2390139

[18]   Hartnett, D.C., Samenus, R.J., Fischer, L.E. Hetrick, B.A.D. (1994) Plant demographic response to mycorrhizal symbiosis in tallgrass prairie. Oecologia, 99, 21-26. doi:10.1007/BF00317079

[19]   Koske, R.E. and Gemma, J.N. (1997) Mycorrhizae and succession in planting of beachgrass in sand dunes. American Journal of Botany, 84, 118-130. doi:10.2307/2445889

[20]   Gillespie, I.G. and Allen, E.B. (2006) Effects of soil and mycorrhizae from native and invaded vegetation on a rare California forb. Applied Soil Ecology, 32, 6-12. doi:10.1016/j.apsoil.2005.03.008

[21]   Scullion, J., Eason, W.R. and Scott, E.P. (1998) The effectivity of arbuscular mycorrhizal fungi from high input conventional and organic grassland and grass-arable rotations. Plant and Soil, 204, 243-254. doi:10.1023/A:1004319325290

[22]   Henkel, T.W., Smith, W.K. and Christensen, M. (1989) Infectivity and effectivity of indigenous vesicular-arbuscular mycorrhizal fungi from contiguous soils in southwestern Wyoming, USA. New Phytologist, 112, 205-214. doi:10.1111/j.1469-8137.1989.tb02375.x

[23]   Shetty, K.G., Hetrick, B.A.D. and Schwab, A.P. (1995) Effects of mycorrhizae and fertilizer amendments on zinc tolerance of plants. Environmental Pollution, 88, 307-314. doi:10.1016/0269-7491(95)93444-5

[24]   Thorne, M.E., Zamora, B.A. and Kennedy, A.C. (1998) Sewage sludge and mycorrhizal effects on Secar bluebunch wheatgrass in mine spoil. Journal of Environmental Quality, 27, 1228-1233. doi:10.2134/jeq1998.00472425002700050030x

[25]   Zhu, Y.G., Laidlaw, A.S., Christie, P. and Hammond, M.E.R. (2000) The specificity of arbuscular mycorrhizal fungi in perennial ryegrass-white clover pasture. Agriculture Ecosystems and Environment, 77, 211-218. doi:10.1016/S0167-8809(99)00087-0

[26]   Ronsheim, M.L. and Anderson, S.E. (2001) Populationlevel specificity in the plant-mycorrhizae associations alters intraspecific interactions among neighboring plants. Oecologia, 128, 77-84. doi:10.1007/s004420000625

[27]   Bevor, J.D. (2002) Host-specificity of AM fungal population growth rates can generate feedback on plant growth. Plant and Soil, 244, 281-290. doi:10.1023/A:1020221609080

[28]   Sanders, I.R. (2003) Preference, specificity and cheating in the arbuscular mycorrhizae symbiosis. Trends in Plant Science, 8, 143-145. doi:10.1016/S1360-1385(03)00012-8

[29]   Kaster, G. and Vimmerstedt, J.P. (1996) Tree planting on strip-mined land. In: Norland, E.R. and Ervin, M.S., Eds., Forest Resource Issues in Ohio 1996, Legislator’s Handbook, 2nd Edition. Ohio Society of American Foresters, Columbus.

[30]   SMCRA (1977) (Surface Mining Control and Reclamation Act) Office of Surface Mining Reclamation and Enforcement, US Department of Interior, Washington DC.

[31]   Transeau, E.N. (1935) The prairie peninsula. Ecology, 3, 423-437. doi:10.2307/1930078

[32]   Sala, O.E., Patron, W.J., Joyce, L.A. and Lauenroth, W.K. (1988) Primary production of the central grassland region of the United States. Ecology, 69, 40-45. doi:10.2307/1943158

[33]   Klips, R.A. (2003) Vegetation of Claridon railroad prairie, a remnant of the Sandusky Plains of central Ohio. Castanea, 68, 135-142.

[34]   Loree, M.A.J. and Williams, S.E. (1987) Colonization of western wheatgrass (Agropyron smithii Rydb.) by vesicular-arbuscular mycorrhizal fungi during the revegetation of a surface mine. New Phytologist, 106, 735-744. doi:10.1111/j.1469-8137.1987.tb00174.x

[35]   Hetrick, B.A.D., Wilson, G.W.T. and Leslie, J.F. (1991) Root architecture of warm- and cool-season grasses: relationship to mycorrhizal dependence. Canadian Journal of Botany, 69, 112-118. doi:10.1139/b91-016

[36]   Noyd, R.K., Pfleger, F.L. and Russelle, M.P. (1995) Interactions between native prairie grasses and indigenous arbuscular mycorrhizal fungi: Implications for reclamation of taconite iron ore tailing. New Phytologist, 129, 651-660. doi:10.1111/j.1469-8137.1995.tb03034.x

[37]   Cavender, N. and Knee, M. (2006) Relationship of seed source and arbuscular mycorrhizal fungi inoculum type to growth and colonization of big bluestem (Andropogon gerardii). Plant and Soil, 285, 57-65. doi:10.1007/s11104-005-5228-2

[38]   Hitchcock, A.S. (1971) Manual of the grasses of the United States. Dover Public, New York.

[39]   Taheri, W.I. and Bevor, J.D. (2010) Adaptation of plants and arbuscular mycorrhizal fungi to coal tailings in Indiana. Applied Soil Ecology, 45, 138-143.

[40]   Simmons, J.A., Currie, W.S., Eshleman, K.N., Kuers, K., Monteleone, S., Negley, T.L., Pohlad, B.R. and Thomas, C.L. (2008) Forest to reclaimed mine land use change leads to altered ecosystem structure and function. Ecological Applications, 18, 104-118.

[41]   Liu, R. and Wang, F. (2003) Selection of appropriate host plants used in trap culture of arbuscular mycorrhizal fungi. Mycorrhiza, 13, 123-127. doi:10.1007/s00572-002-0207-4

[42]   Phillips, J.M. and Hayman, D.S. (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 5, 158-161. doi:10.1016/S0007-1536(70)80110-3

[43]   Newman, E.I. (1966) A method of estimating the total length of root in a sample. Journal of Applied Ecology, 3, 139-145. doi:10.2307/2401670

[44]   Giovannetti, M. and Mosse, B. (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist, 84, 489-500. doi:10.1111/j.1469-8137.1980.tb04556.x

[45]   SAS Institute Inc. (2002) SAS OnlineDoc, Version 9.1.3. http://support.sas.com/onlinedoc/913/docMainpage.jsp.

[46]   Milliken, G.A. and Johnson, D.E. (1984) Analysis of messy data, Volume I: Designed experiments. Wadsworth, Inc., Belmont.

[47]   Zar, J.H. (1999) Biostatistical analysis. 4th Edition, Prentice-Hall, Inc., Upper Saddle River.

[48]   Mosse, B. (1973) Plant growth responses to vesicular-arbuscular mycorrhiza IV. In soil given additional phosphate. New Phytologist, 72, 127-136. doi:10.1111/j.1469-8137.1973.tb02017.x

[49]   Schubert, A. and Hayman, D.S. (1986) Plant growth responses to vesicular-arbuscular mycorrhiza. XVI. Effectiveness of different endophytes at different levels of soil phosphate. New Phytologist, 103, 79-90. doi:10.1111/j.1469-8137.1986.tb00598.x

[50]   Sainz, M.J. and Arines, J. (1988) Effects of native vesicular-arbuscular mycorrhizal fungi and phosphate fertilizer on red clover growth in acid soils. Journal of Agricultural Science Cambridge, 111, 67-73. doi:10.1017/S0021859600082824

[51]   Al-Karaki, G.N. and Al-Omoush, M. (2002) Wheat response to phosphogypsum and mycorrhizal fungi in alkaline soil. Journal of Plant Nutrition, 25, 873-883. doi:10.1081/PLN-120002966

[52]   Lioi, L. and Giovannetti, M. (1987) Variable effectivity of three vesicular-arbuscular mycorrhizal endophytes in Hedysarum coronarium and Medicago sativa. Biology and Fertility of Soils, 4, 193-197. doi:10.1007/BF00270940

[53]   Sanders, I.R. and Fitter, A.H. (1992) The ecology and functioning of vesicular-arbuscular mycorrhizas in coexisting grassland species. New Phytologist, 120, 525-533. doi:10.1111/j.1469-8137.1992.tb01802.x

[54]   Mohammad, M.J., Pan, W.L. and Kennedy, A.C. (1995) Wheat response to vesicular-arbuscular mycorrhizal fungal inoculation of soils from eroded toposequence. Soil Science Society of America Journal, 59, 1086-1090. doi:10.2136/sssaj1995.03615995005900040020x

[55]   Hetrick, B.A.D., Kitt, D.G. and Wilson, G.T. (1986) The influence of phosphorus fertilization, drought, fungal species, and nonsterile soil on mycorrhizal growth response in tall grass prairie plants. Canadian Journal of Botany, 64, 1199-1203. doi:10.1139/b86-162

[56]   Dhillion, S.S. (1992) Evidence for host-mycorrhizal preference in native grassland species. Mycological Research, 96, 359-362. doi:10.1016/S0953-7562(09)80951-9

[57]   Harris, G.A. (1967) Some competitive relationships between Agropyron spicatum and Bromus tectorum. Ecological Monographs, 37, 89-111. doi:10.2307/2937337

 
 
Top