WJCD  Vol.3 No.4 A , July 2013
Hemodynamic changes acutely determined by primary PCI in STEMI patients evaluated with a minimally invasive method
Objective: Few studies are available on the hemodynamic changes acutely determined by Primary Percutaneous Coronary Intervention (PCI) in ST-Elevation Myocardial Infarction (STEMI) patients, probably for the difficult evaluation of hemodynamic variables in this acute setting. Therefore, the paper is to evaluate the variations of several hemodynamic parameters determined by PCI using PRAM (Pressure Recording Analytical Method), minimally invasive hemodynamic monitoring. Methods: We analyzed in 20 STEMI patients submitted to PCI several hemodynamic variables, assessed with PRAM from radial/ femoral artery, 3-minute before PCI and at endprocedure. Variables measures were: systolic, diastolic, dicrotic and mean arterial pressures; heart rate (HR); stroke volume (SV); systemic vascular resistance (SVR); dP/dtmax; cardiac cycle efficiency (CCE). Results: In our patients HR, SVR and dP/dtmax decreased significantly (85 ± 6.3 to 77 ± 4.5, p = 0.002; 1738 ± 241 to 1450 ± 253, p = 0.022; 1.22 ± 0.11 to 1.11 ± 0.12, p = 0.007, respectively) while CCE and SV increased significantly (?0.25 ± 0.23 to ?0.01 ± 0.12, p < 0.001; 53 ± 8.4 to 65 ± 11.2, p < 0.001, respectively). Conclusions: Hemodynamic monitoring with PRAM seems feasible during primary PCI and can provide further notions regarding the acute effects determined on cardiovascular system by the culprit artery revascularization. The most significant hemodynamic changes acutely observed in our study should be mainly ascribed to the reduction in sympathetic activity after PCI with a rapid improvement of the cardiovascular system efficiency.

Cite this paper
Giglioli, C. , Tujjar, O. , Cecchi, E. , Landi, D. , Chiostri, M. , Valente, S. , Baldereschi, G. , Meucci, F. , Gensini, G. and Romano, S. (2013) Hemodynamic changes acutely determined by primary PCI in STEMI patients evaluated with a minimally invasive method. World Journal of Cardiovascular Diseases, 3, 69-72. doi: 10.4236/wjcd.2013.34A010.
[1]   Chatterjee, K. (2009) The Swan-Ganz catheters: Past, present, and future. A viewpoint. Circulation, 119, 147152. doi:10.1161/CIRCULATIONAHA.108.811141

[2]   Mackenzie, J.D., Haites, N.E. and Rawles, J.M. (1986) Method of assessing the reproducibility of blood flow measurement: Factor influencing the performance of thermodilution cardiac output computers. British Heart Journal, 55, 14-24. doi:10.1136/hrt.55.1.14

[3]   Jonson, R.W. and Normann, R.A. (1989) Central venous blood temperature fluctuations and thermodilution signal processing in dogs. Annals of Biomedical Engineering, 17, 657-669. doi:10.1007/BF02367469

[4]   Reuter, D.A., Huang, C., Edrich, T., Shernan, S.K. and Eltzsching, H.K. (2010) Cardiac output monitoring using indicator-dilution techniques: Basics, limits, and prospectives. Anesthesia & Analgesia, 110, 799-811. doi:10.1213/ANE.0b013e3181cc885a

[5]   Romano, S.M. and Pistolesi, M. (2002) Assessment of cardiac output from systemic arterial pressure in humans. Critical Care Medicine, 30, 1834-1841. doi:10.1097/00003246-200208000-00027

[6]   Zangrillo, A., Maj, G., Monaco, F., Scandroglio, A.M., Nuzzi, M., Plumari, V., Virzo, I., Bignami, E., Casiraghi, G. and Landoni, G. (2010) Cardiac index validation using the pressure recording analytic method in unstable patients. Journal of Cardiothoracic and Vascular Anesthesia, 24, 265-269. doi:10.1053/j.jvca.2009.09.019

[7]   Romagnoli, S., Romano, S.M., Bevilacqua, S., Lazzeri, C., Gensini, G.F., Pratesi, C., Quattrone, D., Dini, D. and De Gaudio, A.R. (2011) Dynamic response of liquidfilled catheter systems for measurement of blood pressure: Precision of measurements and reliability of pressure recording analytical method with different disposable system. Journal of Critical Care, 26, 415-422. doi:10.1016/j.jcrc.2010.08.010

[8]   Godje, O., Hoke, K., Goetz, A.E., Felbinger, T.W., Reuter, D.A., Reichart, B., Friedl, R., Hannekum, A. and Pfeiffer, U.J. (2002) Reliability of a new algorithm for continuous cardiac output determination by pulse-contour analysis during hemodynamic instability. Critical Care Medicine, 30, 52-58. doi:10.1097/00003246-200201000-00008

[9]   Pittman, J., Bar, Y.S., Sum, P.J., Sherwood, M. and Mark, M. (2005) Continuous cardiac output monitoring with pulse contour analysis: A comparison with lithium indicator dilution cardiac output measurement. Critical Care Medicine, 30, 2015-2021. doi:10.1097/01.CCM.0000179021.36805.1F

[10]   Romagnoli, S. and Romano, S.M. (2010) Estimation of hemodynamic parameters by arterial waveform: Available technologies. Anesthesia & Analgesia, 110, 257-258. doi:10.1213/ANE.0b013e3181c135f1

[11]   Romano, S.M. (2012) Cardiac cycle efficiency: A new parameter able to fully evaluate the dynamic interplay of the cardiac circulatory system. International Journal of Cardiology, 155, 326-327. doi:10.1016/j.ijcard.2011.12.008

[12]   Giglioli, C., Landi, D., Cecchi, E., Chiostri, M., Gensini, G.F., Valente, V., Ciaccheri, M., Castelli, G. and Romano, S.M. (2011) Effects of ultrafiltration vs. diuretics on clinical, biohumoral and hemodynamic variables in patients with decompensated heart failure: The ULTRA-DISCO study. European Journal of Heart Failure, 13, 337-346. doi:10.1093/eurjhf/hfq207

[13]   Ceremuzynski, L. (1981) Hormonal and metabolic reactions evoked by acute myocardial infarction. Circulation Research, 48, 767. doi:10.1161/01.RES.48.6.767

[14]   Karlsberg, R.P., Cryer, P.E. and Roberts, R. (1981) Serial plasma cathecolamine response early in the course of clinical acute myocardial infarction: relationship to infarct extent and mortality. American Heart Journal, 102, 24-29. doi:10.1016/0002-8703(81)90408-7

[15]   Givertz, M.M., Andreou, C., Conrad, C.H. and Colucci, W.S. (2007) Direct myocardial effects of levosimendan in humans with left ventricular dysfunction: Alteration of force-frequency and relaxation-frequency relationships. Circulation, 115, 1218-1224.