AJPS  Vol.4 No.7 A , July 2013
Viability and Action of CPL Lectin on in Vitro Germinability of Pollen Grains of Malpighia emarginata DC.—(Malpighiaceae)
Abstract: This study aimed to observe the viability of the pollen grains of Malpighia emarginata DC. (West Indian cherry) and the action of a lectin in their germination. Lectins are proteins that specifically interact with carbohydrates, but don’t modify them and bind with high affinity and specificity, promoting a transfer of information that is clearly central to many cellular processes in living beings. For the viability test was used aniline blue in lactophenol. The in vitro germination test used was the hanging drop method, in control medium containing sucrose, boric acid, calcium nitrate and agar. The experiment dealt with three different treatments in order to pollen germination: growing medium without addition of lectin, with 1.0 μg/ml and with 3.0 μg/ml CPL lectin. This lectin is extracted from seeds of Crotalaria pallida L.-Leguminosae. Data on pollen grains were analyzed by one-way ANOVA, with 95% reliability and comparison of averages by Turkey test at 5% probability. It was found that despite previous high viability of the pollen grains (c. 70%), a germinability rate has been low, yet exceptionally larger in pollen samples placed on a growing medium with addition of 3.0 μg/ml of CPL lectin (24%). There was no significant difference among the pollen grains germinate in medium without lectin and those in medium with the addition of only 1.0 μg/ml. According to data obtained in the treatments, CPL lectin, with concentration of 3.0 μg/ml, influenced the formation of the pollen tube and thus more pollen germinated in Malpighia emarginata.
Cite this paper: A. Santos Sousa, E. Lima Rego and F. Ribeiro dos Santos, "Viability and Action of CPL Lectin on in Vitro Germinability of Pollen Grains of Malpighia emarginata DC.—(Malpighiaceae)," American Journal of Plant Sciences, Vol. 4 No. 7, 2013, pp. 53-58. doi: 10.4236/ajps.2013.47A1007.

[1]   B. M. Freitas and V. L. Imperatriz-Fonseca, “A Importancia Economica da Polinizacao,” Mensagem Doce, Vol. 80, 2005, pp. 44-46.

[2]   L. A. Salles, J. D. Ramos, M. Pasqual, K. P. Junqueira and A. B. da Silva, “Sacarose e ph na Germinação in Vitro de Grãos de Pólen de Citros,” Ciências Agrotécnicas, Vol. 30, No. 1, 2006, pp. 170-174. doi:10.1590/S1413-70542006000100025

[3]   M. R. Vianna, P. de Marco Junior and L. A. O. Campos, “Manejo de Polinizadores e o Incremento da Produtividade Agrícola: Uma Abordagem Sustentável dos Serviços do Ecossistema,” Revista Brasileira de Agroecologia, Vol. 2, No. 1, 2007, pp. 144-147.

[4]   F. C. U. Matsuura and R. B. Rolim, “Avaliacao da Adicao de suco de Acerola em suco de Abacaxi Visando a Producao de um ‘Blend’ com alto teor de Vitamina C,” Revista Brasileira de Fruticultura, Vol. 24, No. 1, 2002, pp. 1-5. doi:10.1590/S0100-29452002000100030

[5]   T. Mezadri, M. S. Fernández-Pachón, D. Villaño, M. C. García-Parrilla, and A. M. Troncoso, “El Fruto de la Acerola: Composición y Posibles Usos Alimentícios,” ALAN, Vol. 56, 2006, pp. 101-109.

[6]   R. Ritzinger and C. H. S. P. Ritzinger, “Acerola—Aspectos Gerais da Cultura,” Cruz das Almas-Bahia, Acerola em foco, Vol. 9, 2004, pp. 1-2.

[7]   A. F. Edlund, R. Swanson and D. Preuss, “Pollen and Stigma Structure and Function: The Role of Diversity in Pollination,” Plant Cell, Vol. 16, No. S1, 2004, pp. 84-97. doi:10.1105/tpc.015800

[8]   C. Dumas, R. B. Knox and T. Gaude, “Pollen-Pistil Recognition: New Concepts from Electron Microscopy and Cytochemistry,” International Review of Cytology, Vol. 90, No. 8, 1984, pp. 239-272. doi:10.1016/S0074-7696(08)61491-6

[9]   L. C. Li and D. J. Cosgrove, “Grass Group i Pollen Allergens (β-Expansins) Lack Proteinase Activity and Do Out Cause Wall Loosening via Proteolysis,” European Journal Biochemistry, Vol. 268, 2001, pp. 4217-4226. doi:10.1046/j.1432-1327.2001.02336.x

[10]   H. Rudiger and H. J. Gabius, “Plant Lectins: Occurrence, Biochemistry, Unctions and Application,” Glycoconjugate, Vol. 18, 2001, pp. 589-613. doi:10.1023/A:1020687518999

[11]   D. Southworth, “Lectins Stimulate Pollen Germination,” Nature, Vol. 258, 1975, pp. 600-602. doi:10.1038/258600a0

[12]   D. Southworth and D. B. Dickinson, “Ultrastructural Changes in Germinating Lily Pollen,” Grana, Vol. 20, No. 1, 1981, pp. 29-35. doi:10.1080/00173138109436734

[13]   J. Wan, A. Patel, M. Mathieu, S. Kim, D. Xu and G. Stacey, “A Lectin Receptor-Like Kinase Is Required for Pollen Development in Arabidopsis,” Plant Molecular Biology, Vol. 67,No. 5,2008, pp. 469-482. doi:10.1007/s11103-008-9332-6

[14]   E. J. L. Rego, D. D. Carvalho, S. Marangoni, B. Oliveira and J. C. Novello, “Lectins from Seeds of Crotalaria pallida (Smoth Rattlexbox),” Journal Phytochemistry, Vol. 60, No. 5, 2002, pp. 441-446. doi:10.1016/S0031-9422(02)00132-2

[15]   C. A. Kears and D. W. Inouye, “Techniques for Pollination Biologists,” University Press of Colorado, Niwot, 1993.

[16]   S. E. Ruzin, “Plant Microtechnique and Microscopy,” Oxford University Press, New York, 1999.

[17]   L. G. Ma, Q. S. Fan, Z. Q. Yu, H. L. Zhou, F. S. Zhang and D. Y. Sun, “Does Aluminum Inhibit Pollen Germination via Extracellular Calmodulin?” Plant Cell Physiology, Vol. 41, No. 3, 2000, pp. 372-376. doi:10.1093/pcp/41.3.372

[18]   L. Fan, Y. Wang, H. Wang and W. Wu, “In Vitro Arabidopsis Pollen Germination and Characterization of the Inward Potassium Currents in Arabidopsis Pollen Grain Protoplasts,” The Journal of Experimental Botany, Vol. 52, No. 361, 2001, pp. 1603-1614. doi:10.1093/jexbot/52.361.1603

[19]   R. C. Franzon and M. do C. B. Raseira, “Germinação in Vitro e Armazenamento Do Pólen de Eugenia involucrata DC. (Myrtaceae),” Revista Brasileira de Fruticultura, Vol. 28, No. 1, 2006, pp. 18-20. doi:10.1590/S0100-29452006000100008

[20]   J. Zhang, J. Liu, Z. Chen and J. Lin, “In Vitro Germination and Growth of Lily Pollen Tubes Is Affected by Calcium Inhibitor with Reference to Calcium Distribution,” Flora, Vol. 202,No. 7,2007, pp. 581-588. doi:10.1016/j.flora.2006.11.005

[21]   R. C. Franzon, M. do C. B. Raseira and A. W. Júnior, “Germinação in Vitro de Pólen de Guabirobeira (Campomanesia xanthocarpa Berg),” Ceres, Vol. 53, No. 305, 2008, pp. 129-134.

[22]   A. García-Hoyos, J. Sánchez-Robles, L. A. García-Hernández and F. de León-González, “Reproducción Sexual e Influencia de Sustratos en el Desarrollo de Malpighia glabra L. (Malpighiaceae),” Polibotánica, Vol. 32, 2011, pp. 119-133.

[23]   K. M. M. Siqueira, C. F. Martins, L. H. P. Kiill and L. T. Silva, “Estudo Comparativo da Polinização em Variedades de Aceroleiras (Malpighia emarginata DC., Malpighiaceae),” Revista Caatinga, Vol. 24, No. 2, 2011, pp. 18-25.

[24]   A. Ferri, E. Giordani, G. Padula and E. Bellini, “Viability and in Vitro Germinability of Pollen Grains of Olive Cultivars and Advanced Selections Obtained in Italy,” Advances in Horticultural Science, Vol. 22, 2008, pp. 116-122.

[25]   L. J. Vieira, T. L. Soares, M. L. Rossi, F. A. R. Santos and F. V. D. Souza, “Viability, Production and Morphology of Pollen Grains for Different Species in the Genus Manihot (Euphorbiaceae),” Acta Botanica Brasilica, Vol. 26,No. 2,2012, pp. 350-356. doi:10.1590/S0102-33062012000200011

[26]   V. G. Kakani, K. R. Reddy, S. Koti, T. P. Wallace, P. V. V. Prasad, V. R. Reddy and D. Zhao, “Differences in Vitro Pollen Germination and Pollen Tube Growth of Cotton Cultivars in Response to High Temperature,” Annals of Botany, Vol. 96,No. 1,2005, pp. 59-67. doi:10.1093/aob/mci149

[27]   I. Acar and V. G. Kakani, “The Effects of Temperature on in Vitro Pollen Germination and Pollen Tube Growth of Pistacia spp.,” Scientia Horticulturae, Vol. 125,No. 4,2010, pp. 569-572. doi:10.1016/j.scienta.2010.04.040

[28]   F. Aguilera and L. R. Valenzuela, “Time Trend in the Viability of Pollen Grains in the ‘Picual’ Olive (Olea europaea L.) Cultivar,” Palynology, Vol. 37, No. 1, 2013, pp. 28-34.

[29]   I. Serrano, C. Suárez, A. Olmedilla, H. F. Rapoport and M. I. Rodríguez-Gárcia, “Structural Organization and Cytochemical Features of the Pistil in Olive (Olea europaea L.) var. Picual at Anthesis,” Sexual Plant Reproduction, Vol. 21, No. 2, 2008, pp. 99-111. doi:10.1007/s00497-008-0075-y

[30]   E. Pacini and M. Hesse, “Pollenkitt—Its Composition, Form and Functions,” Flora, Vol. 200, No. 5, 2005, pp. 399-415. doi:10.1016/j.flora.2005.02.006

[31]   H. F. Carvalho, “Aspectos Moleculares e Biológicos das Lectinas,” Ciência e Cultura, Vol. 42, 1990, pp. 884-893.

[32]   T. E. Ferrari, D. Bruns and D. H. Wallace, “Isolation of Plant Glycoprotein Involved with the Control on Intercellular Recognition,” Plant Physiology, Vol. 67, No. 2, 1981, pp. 270-277. doi:10.1104/pp.67.2.270

[33]   N. P. Matveeva, D. S. Andreyuk, E. A. Lasareva and I. P. Ermakov, “The Effect of Concanavalin A on Membrane Potential and Intracellular ph during Activation in Vitro of Tobacco Pollen Grains,” Russian Journal of Plant Physiology, Vol. 51, No. 4, 2004, pp. 494-499. doi:10.1023/B:RUPP.0000035742.36218.6e

[34]   N. P. Matveeva, E. A. Lazareva, T. P. Klyushnik, S. A. Zozulya and I. P. Ermakov, “Lectins of the Nicotiana tabacum Pollen Grain Walls Stimulating in Vitro Pollen Germination,” Russian Journal of Plant Physiology, Vol. 54, No. 5, 2007, pp. 619-625. doi:10.1134/S1021443707050081

[35]   C. Albrecht, E. Russinova, V. Hecht, E. Baaijens and S. De Vries, “The Arabidopsis Thaliana Somatic Embryogenesis Receptor-Like Kinases 1 and 2 Control Male Sporogenesis,” Plant Cell, Vol. 17, No. 12, 2005, pp. 3337-3349. doi:10.1105/tpc.105.036814

[36]   J. Colcombet, A. Boisson-Dernier, R. Ros-Palau, C. E. Vera and J. I. Schroeder, “Arabidopsis Somatic Embryogenesis Receptor Kinases1 and 2 Are Essential for Tapetum Development and Microspore Maturation,” Plant Cell, Vol. 17, No. 12, 2005, pp. 3350-3361. doi:10.1105/tpc.105.036731

[37]   C. L. Hord, C. Chen, B. J. Deyoung, S. E. Clark and H. Ma, “The BAM1/ BAM2 Receptor-Like Kinases Are Important Regulators of Arabidopsis Early Anther Development,” Plant Cell, Vol. 18, No. 7, 2006, pp. 1667-1680. doi:10.1105/tpc.105.036871