JBiSE  Vol.6 No.7 , July 2013
The interrelationship between insulin resistane and Alzheimer development
ABSTRACT

Abnormalities in insulin metabolism, characteristic of T2DM, are among the major factors thought to mechanistically influence the onset of AD. These abnormalities are thought to play a role in AD via their influence on the synthesis and degradation of Aβ and as a consequence of the cascade of neuronal alterations resulting from the effects of danger/alarm signals from oligomeric amyloid species. Additionally, recent studies have indicated that certain signal transduction pathways downstream of the InsR may also promote the generation of Aβ peptides by modulating the cleavage of the parent Aβ precursor protein (AβPP) at the γ-secretase site, a cleavage site necessary for Aβ amyloidogenicity. Glucose homeostasis is critical for energy generation, neuronal maintenance, neurogenesis, neurotransmitter regulation, cell survival and synaptic plasticity. It also plays a key role in cognitive function. In an insulin resistance condition, there is a reduced sensitivity to insulin resulting in hyperinsulinemia; this condition persists for several years before becoming full blown diabetes. Toxic levels of insulin negatively influence neuronal function and survival, and elevation of peripheral insulin concentration acutely increases its cerebrospinal fluid (CSF) concentration. Peripheral hyperinsulinemia correlates with an abnormal removal of the amyloid beta peptide (Aβ) and an increase of tau hyperphosphorylation as a result of augmented cdk5 and GSK3β activities. This leads to cellular cascades that trigger a neurodegenerative phenotype and decline in cognitive function. Chronic peripheral hyperinsulinemia results in a reduction of insulin transport across the BBB and reduced insulin signaling in brain, altering all of insulin’s actions, including its anti-apoptotic effect. However, the increase in brain insulin levels resulting from its peripheral administration at optimal doses has shown a cognition enhancing effect on patient with AD.


Cite this paper
Ghareeb, D. , Mohamed, S. and El-Sayed, M. (2013) The interrelationship between insulin resistane and Alzheimer development. Journal of Biomedical Science and Engineering, 6, 754-773. doi: 10.4236/jbise.2013.67093.
References
[1]   Marchesini, G., Brizi, M., Bianchi, G., Tomassetti, S., Bu gianesi, E., Lenzi, M., McCullough, A.J., Natale, S., Forlani, G. and Melchionda, N. (2001) Nonalcoholic fatty liver disease: A feature of the metabolic syndrome. Diabetes, 50, 1844-1850. doi:10.2337/diabetes.50.8.1844

[2]   Sanyal, A.J., Campbell-Sargent, C., Mirshahi, F., Rizzo, W.B., Contos, M.J., Sterling, R.K., Luketic, V.A., Shiffman, M.L. and Clore, J.N. (2001) Nonalcoholic steatohepatitis: Association of insulin resistance and mitochondrial abnormalities. Gastroenterology, 120, 1183-1192. doi:10.1053/gast.2001.23256

[3]   Petersen, K.F., Befroy, D., Dufour, S., Dziura, J., Arijan, C., Rothman, D.L., DiPietro, L., Cline, G.W. and Shulman, G.I. (2003) Mitochondrial dysfunction in the elderly: Possible role in insulin resistance. Science, 300, 1140-1142. doi:10.1126/science.1082889

[4]   Iossa, S., Mollica, M.P., Lionetti, L., Crescenzo, R., Tas so, R. and Liverini, G. (2004) A possible link between skeletal muscle mitochondrial efficiency and age-induced Insulin Resistance. Diabetes, 53, 2861-2866. doi:10.2337/diabetes.53.11.2861

[5]   Saltiel, A.R. and Kahn, C.R. (2001) Insulin signaling and the regulation of glucose and lipid metabolism. Nature, 414, 799-806. doi:10.1038/414799a

[6]   Samuel, V.T. and Shulman, G.I. (2005) Insulin resistance in NAFLD: Potential mechanisms and therapies. In: Farrell, G.C., George, J., Hall, P., et al., Eds. Fatty Liver Disease—NASH and Related Disorders, Oxford Publishing Limited, Blackwell, 38-54.

[7]   Shepherd, P.R. and Kahn, B.B. (1999) Glucose transporters and insulin action—implications for insulin resistance and diabetes mellitus. New England Journal of Medicine, 341, 248-257. doi:10.1056/NEJM199907223410406

[8]   Virkamaki, A., Ueki, K. and Kahn, C.R. (1999) Protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. Journal of Clinical Investigation, 103, 931-943. doi:10.1172/JCI6609

[9]   Combettes-Souverain, M. and Issad, T. (1998) Molecular basis on insulin action. Diabetes Metabolism, 24, 477-489.

[10]   McCullough, A.J. (2006) Pathophysiology of nonalcoholic steatohepatitis. Journal of Clinical Gastroenterology, 40, S17-S29.

[11]   Synkiotis, G.P. and Papavassiliou, AG. (2001) Serine phosphorylation of insulin receptor substrates-1: A novel target for the reversal of insulin resistance. Molecular Endocrinology, 15, 1864-1869.

[12]   Kido, Y., Burks, D.J., Withers, D., Bruning, J.C., Kahn, C.R., White, M.F. and Accili, D. (2000) Tissue-specific insulin resistance in mice with combined mutations of insulin receptor, IRS-1 and IRS-2. Journal of Clinical Investigation, 105, 199-205. doi:10.1172/JCI7917

[13]   Previs, S.F., Withers, D.J., Ren, J.M., White, M.F. and Shulman, G.I. (2000) Contrasting effects of IRS-1 versus IRS-2 gene disruption on carbohydrate and lipid metabolism in vivo. Journal of Biological Chemistry, 275, 38990-38994. doi:10.1074/jbc.M006490200

[14]   Das, U.N. (2001) Is obesity an inflammatory condition? Nutrition, 17, 953-966. doi:10.1016/S0899-9007(01)00672-4

[15]   Promrat, K., Lutchman, G., Uwaifo, G.I., Freedman, R.J., Soza, A., Heller, T., Doo, E., Ghany, M., Premkumar, A., Park, Y., Liang, T.J., Yanovski, J.A., Kleiner, D.E. and Hoofnagle, J.H. (2004) A pilot study of pioglitazone treatment for nonalcoholic steatohepatitis. Hepatology, 39, 188-196. doi:10.1002/hep.20012

[16]   Neuschwander-Tetri, B.A., Brunt, E.M., Wehmeier, K.R., Oliver, D. and Bacon, B.R. (2003) Improved nonalco holic steatohepatitis after 48 weeks of treatment with the PPAR-gamma ligand rosiglitazone. Hepatology, 38, 1008-1017.

[17]   Sekiya, M., Yahagi, N., Matsuzaka, T., Najima, Y., Nakakuki, M., Nagai, R., Ishibashi, S., Osuga, J., Yamada, N. and Shimano, H. (2003) Polyunsaturated fatty acids ameliorate hepaticsteatosis in obese mice by SREBP-1 suppression. Hepatology, 38, 1529-1539.

[18]   Yuan, M., Konstantopoulos, N., Lee, J., Hansen, L., Li, ZW., Karin, M. and Shoelson, S.E. (2001) Reversal of obesity and diet-induced insulin resistance with salicylates on targeted disruption of IKK-β. Science, 293, 1673-1677. doi:10.1126/science.1061620

[19]   Parola, M. and Robino, G. (2001) Oxidative stress-related molecules and liver fibrosis. Journal of Hepatology, 35, 297-306. doi:10.1016/S0168-8278(01)00142-8

[20]   Goldstein, B.J., Mahadev, K. and Wu, X. (2005) Insulin action is facilitated by insulin-stimulated reactive oxygen species with multiple potential signaling targets. Diabetes, 54, 311-321. doi:10.2337/diabetes.54.2.311

[21]   Wanless, I.R., Bargman, J.M., Oreopoullos, D.G. and Vas, S.I. (1989) Subcapsular steatonecrosis in response to peritoneal insulin deliver: A clue to the pathogenesis of steatonecrosis in obesity. Modern Pathology, 2, 69-74.

[22]   Khalili, K., Lan, F.P., Hanbidge, A.E., Muradali, D., Oreopoulos, D.G. and Wanless, I.R. (2003) Hepatic sub capsular steatosis in response to intraperitoneal insulin delivery: CT findings and prevalence. American Journal of Roentgenology, 180, 1601-1604. doi:10.2214/ajr.180.6.1801601

[23]   Li, X.L., Man, K., Ng, K.T., Lee, T.K., Lo, C.M. and Fan, S.T. (2004) Insulin in UW solution exacerbates hepatic ischemia/reperfusion injury by energy depletion through the IRS-2/SREBP-1c pathway. Liver Transplantation, 10, 1172-1182. doi:10.1002/lt.20240

[24]   Paradis, V., Perlemuter, G., Bonvoust, F., Dargere, D., Parfait, B., Vidaud, M., Conti, M., Huet, S., Ba, N., Buffet, C. and Bedossa, P. (2001) High glucose and hyperin sulinemia stimulate connective tissue growth factor expression: A potential mechanism involved in progression to fibrosis in nonalcoholic steatohepatitis. Hepatology, 34, 738-744.

[25]   Matteoni, C.A., Younossi, Z.M., Gramlich, T., Boparai, N., Liu, Y.C. and McCullough, A.J. (1999) Nonalcoholic fatty liver disease: A spectrum of clinical and pathologi cal severity. Gastroenterology, 116, 1413-1419. doi:10.1016/S0016-5085(99)70506-8

[26]   Younossi, Z.M., Gramlich, T., Matteoni, C.A., Boparai, N. and McCullough, A.J. (2004) Nonalcoholic fatty liver disease in patients with type II diabetes. Clinical Gastro enterology and Hepatology, 2, 262-265. doi:10.1016/S1542-3565(04)00014-X

[27]   El-Serag, H.B., Tran, T. and Everhart, J.E. (2004) Diabetes increases the risk of chronic liver disease and hepato cellular carcinoma. Gastroenterology, 126, 460-468. doi:10.1053/j.gastro.2003.10.065

[28]   Ozcan, U., Cao, Q., Yilmaz, E., Lee, A.H., Iwakoshi, N.N., Ozdelen, E., Tuncman, G., G?rgün, C., Glimcher, L.H. and Hotamisligil, G.S. (2004) Endoplasmic reticulum stress links obesity, insulin action, and type II diabetes. Science, 306, 457-461. doi:10.1126/science.1103160

[29]   Muoio, D.M. (2004) Insulin resistance takes a trip through the ER. Science, 306, 4285-4426. doi:10.1126/science.1104680

[30]   Hasegawa, T., Yoneda, M., Nakamura, K., Makino, I. and Terano, A. (2001) Plasma transforming growth factor beta1 level and efficacy of α-tocopherol in patients with non-alcoholic steatohepatitis: A pilot study. Journal of Alimentary Pharmacology & Therapeutics, 15, 1667-1672. doi:10.1046/j.1365-2036.2001.01083.x

[31]   Robertson, G., Leclercq, I. and Farrell, G.C. (2001) Non alcoholic steatosis and steatohepatitis. II. Cytochrome P-450 enzymes and oxidative stress. American Journal of Physiology—Gastrointestinal and Liver Physiology, 281, G1135-G1139.

[32]   Banks, W.A. (2004) The source of cerebral insulin. European Journal of Pharmacology, 490, 5-12. doi:10.1016/j.ejphar.2004.02.040

[33]   Banks, W.A. (2006) Blood-brain barrier and energy balance. Obesity, 14, 234S-237S. doi:10.1038/oby.2006.315

[34]   Margolis, R.U. and Altszuler, N. (1967) Insulin in the cerebrospinal fluid. Nature, 215, 1375-1376. doi:10.1038/2151375a0

[35]   Steffens, A.B., Scheurink, A.J., Porte Jr., D. and Woods, S.C. (1988) Penetration of peripheral glucose and insulin into cerebrospinal fluid in rat. American Journal of Physiology, 255, R200-R204.

[36]   Schwartz, M.W., Figlewicz, D.P., Baskin, D.G., Woods, S.C. and Porte Jr., D. (1992) Insulin in the brain: A hormonal regulator of energy balance. Endocrine Reviews, 13, 387-414.

[37]   Baura, G.D., Foster, D.M., Porter Jr., D., Kahn, S.E., Bergman, R.N., Cobelli, C. and Schwartz, M.W. (1993) Saturable transport of insulin from plasma into the central nervous system of dogs in vivo: A mechanism for regulated insulin delivery to the brain. Journal of Clinical Investigation, 92, 1824-1830. doi:10.1172/JCI116773

[38]   Banks, W.A., Jaspan, J.B. and Kastin, A.J. (1997) Selective, physiological transport of insulin across the blood brain barrier: Novel demonstration by species-specific radioimmunoassay. Peptides, 18, 1257-1262. doi:10.1016/S0196-9781(97)00198-8

[39]   Banks, W.A., Jaspan, J.B., Huang, W. and Kastin, A.J. (1997) Transport of insulin across the blood-brain barrier: Saturability at euglycemic doses of insulin. Peptides, 18, 1423-1429. doi:10.1016/S0196-9781(97)00231-3

[40]   Woods, S.C., Seeley, R.J., Baskin, D.G. and Schwartz, M.W. (2003) Insulin and blood-brain barrier. Current Pharmaceutical Design, Vol. 9, 795-800. doi:10.2174/1381612033455323

[41]   Neumann, K.F., Rojo, L., Navarrete, L.P., Farías, G., Reyes, P. and Maccioni, R.B. (2008) Insulin resistance and Alzheimer’s disease: Molecular links & clinical implications. Current Alzheimer Research, 5, 438-447. doi:10.2174/156720508785908919

[42]   Devaskar, S.U., Giddings, S.J., Rajakumar, P.A., Carnaghi, L.R., Menon, R.K. and Zahm, D.S. (1994) Insulin gene expression and insulin synthesis in mammalian neuronal cells. Journal of Biological Chemistry, 269, 8445-8454.

[43]   Rulifson, E.J., Kim, S.K. and Nusse, R. (2002) Ablation of insulin-producing neurons in flies: Growth and diabetic phenotypes. Science, 296, 1118-1120. doi:10.1126/science.1070058

[44]   Havrankova, J., Roth, J. and Brownstein, M. (1978) Insulin receptors are widely distributed in central nervous system of rat. Nature, 272, 827-829. doi:10.1038/272827a0

[45]   Van Houten, M., Posner, B.I., Kopriwa B.M. and Brawer, J.R. (1979) Insulin binding sites in the rat brain: In vivo localization to the circumventricular organs by quantitative radioautography. Endocrinology, 105, 666-673. doi:10.1210/endo-105-3-666

[46]   Baskin, D.G., Woods, S.C., West, D.B., Van Houten, M., Posner, B.I., Dorsa, D.M. and Porte Jr., D. (1983) Immunocytochemical detection of insulin in rat hypothalamus and its possible uptake from cerebrospinal fluid. Endocrinology, 113, 1818-1825. doi:10.1210/endo-113-5-1818

[47]   Heidenreich, K.A. Zahniser, N.R. Berhanu, P. Branden burg D. and Olefsky, J.M. (1983) Structural differences between insulin receptors in the brain and peripheral target tissues. Journal of Biological Chemistry, 258, 8527-8530.

[48]   Plum, L., Schubert, M. and Brüning, J.C. (2005) The role of insulin receptor signaling in the brain. Trends in Endocrinology and Metabolism, 16, 59-65. doi:10.1016/j.tem.2005.01.008

[49]   Havrankova, J., Brownstein, M. and Roth, J. (1981) Insulin and insulin receptors in rodent brain. Diabetologia, 20, 268-273. doi:10.1007/BF00254492

[50]   Wozniak, M., Rydzewski, B., Baker, S.P. and Raizadai, M. (1993) The cellular and physiological actions of insulin in the central nervous system. Neurochemistry International, 22, 1-10. doi:10.1016/0197-0186(93)90062-A

[51]   Unger, J.W. and Betz, M. (1998) Insulin receptors and signal transduction proteins in the hypothalamo-hypophy seal system: A review on morphological findings and functional implications. Histology and Histopathology, 13, 1215-1224.

[52]   Abbott, M.A., Wells, D.G. and Fallon, J.R. (1999) The insulin receptor tyrosine kinase substrate p58/53 and the insulin receptor are components of CNS synapses. Journal of Neuroscience, 19, 7300-7308.

[53]   Florant, G.L., Singer, L., Scheurink, A.J., Park, C.R., Richardson, R.D. and Woods, S.C. (1991) Intraventicular insulin reduces food intake and body weight of marmots during the summer feeding period. Physiology and Behavior, 49, 335-338. doi:10.1016/0031-9384(91)90053-Q

[54]   Craft, S. and Watson, G.S. (2004) Insulin and neurode generative disease: Shared and specific mechanisms. Lancet Neurology, 3, 169-178. doi:10.1016/S1474-4422(04)00681-7

[55]   Clarke, D.D. and Sokoloff, L. (1999) Circulation and energy metabolism of the brain. In: Siegel, G.J., Agranoff, B.W., Albers, R.W., Fisher, S.K. and Uhler, M.D., Eds., Basic Neurochemistry, 6th Edition, Lippincott-Ratven, Philadelphia, 637-669.

[56]   Duckrow, R.B., Beard, D.C. and Brennan, R.W. (1987) Regional cerebral blood flow decreases during chronic and acute hyperglycemia. Stroke, 18, 52-58. doi:10.1161/01.STR.18.1.52

[57]   Pelligrino, D.A. Segil, L.J. and Albrecht, R.F. (1990) Brain glucose utilization and transport and cortical function in chronic vs. acute hypoglycemia. American Journal of Physiology, 259, E729-E735.

[58]   Lucignani, G., Namba, H., Nehlig, A., Porrino, L.J., Kennedy, C. and Sokoloff, L. (1987) Effects of insulin on local cerebral glucose utilization in the rat. Journal of Cerebral Blood Flow & Metabolism, 7, 309-314. doi:10.1038/jcbfm.1987.68

[59]   Marfaing, P., Penicaud, L., Broer, Y., Mraovitch, S., Ca lando, Y. and Picon, L. (1990) Effects of hyper insulinemia on local cerebral insulin binding and glucose utilizetion in normoglycemic awake rats. Neuroscience Letters, 115, 279-285.

[60]   Doyle, P. Cusin, I., Rohner-Jeanrenaud, F. and Jean renaud, B. (1995) Four day hyperinsulinemia in euglycemic conditions alters local cerebral glucose utilization in specific brain nuclei of freely moving rats. Brain Research, 684, 47-55. doi:10.1016/0006-8993(95)00402-C

[61]   Fanelli, C.G., Dence, C.S., Markham, J., Videen, T.O., Paramore, D.S., Cryer, P.E. and Powers, W.J. (1998) Blood-to-brain glucose transport and cerebral glucose metabolism are not reduced in poorly controlled type 1 diabetes. Diabetes, 47, 1444-1450. doi:10.2337/diabetes.47.9.1444

[62]   Hasselbalch, S.G., Knudsen, G.M., Videback, C., Pinborg, L.H., Schmidt, J.F., Holm, S., and Paulson, O.B. (1999) No effect of insulin on glucose blood-brain barrier trans port and cerebral metabolism in humans. Diabetes, 48, 1915-1921. doi:10.2337/diabetes.48.10.1915

[63]   Bingham, E.M., Hopkins, D., Smith, D., Pernet, A., Hallett, W., Reed, L., Marsden, P.K. and Amiel, S.A. (2002) The role of insulin in human brain glucose metabolism: An 18-fluoro-deoxyglucose positron emission tomogramphy study. Diabetes, 51, 3384-3390. doi:10.2337/diabetes.51.12.3384

[64]   Brant, A.M., Jess, T.J., Milligan, G., Brown, C.M. and Gould, G.W. (1993) Immunological analysis of glucose transporters expressed in different regions of the rat brain and central nervous system. Biochemical and Biophysical Research Communications, 192, 1297-1302. doi:10.1006/bbrc.1993.1557

[65]   El Messari, S., Leloup, C., Quignon, M., Brisorgueil, M.J., Penicaud, L. and Arluison, M. (1998) Immunocy tochemical localization of the insulin-responsive glucose transporter 4 (Glut4) in the rat central nervous system. Journal of Comparative Neurology, 399, 492-512. doi:10.1002/(SICI)1096-9861(19981005)399:4<492::AID-CNE4>3.0.CO;2-X

[66]   Ibberson, M., Uldry, M. and Thorens, B. (2000) GLUTX1, a novel mammalian glucose transporter expressed in the central nervous system and insulin sensitive tissues. Journal of Biological Chemistry, 275, 4607-4612. doi:10.1074/jbc.275.7.4607

[67]   Reagan, L.P., Gorovits, N., Hoskin, E.K., Alves, S.E., Katz, E.B., Grillo, C.A., Piroli, G.G., McEwen, B.S. and Charron, M.J. (2001) Localization and regulation of GLUTx1 glucose transporter in the hippocampus of strep tozotocin diabetic rats. Proceedings of the National Academy of Sciences of the United States of America, 98, 2820-2825. doi:10.1073/pnas.051629798

[68]   Obici, S., Zhang, B.B., Karkanias G. and Rossetti, L. (2002) Hypothalamic insulin signaling is required for in hibition of glucose production. Nature Medicine, 8, 1376-1382. doi:10.1038/nm1202-798

[69]   Niswender, K.D. and Schwartz, M.W. (2003) Insulin and leptin revisited: Adiposity signals with overlapping physiological and intracellular signaling capabilities. Frontiers in Neuroendocrinology, 24, 1-10. doi:10.1016/S0091-3022(02)00105-X

[70]   Clarke, D.W., Boyd Jr., F.T., Kappy, M.S. and Raizada, M.K. (1984) Insulin binds to specific receptors and stimulates 2-deoxy-D-glucose uptake in cultured glialcells from rat brain. Journal of Biological Chemistry, 259, 11672-11675.

[71]   Schubert, M., Gautam, D., Surjo, D., Ueki, K., Baudler, S., Schubert, D, Kondo, T, Alber, J, Galldiks, N, Küster mann, E., Arndt, S., Jacobs, A.H., Krone, W., Kahn, C.R. and Brüning, J.C. (2004) Role for neuronal Insulin Resistance in neurodegenerative disease. Proceedings of the National Academy of Sciences of the United States of America, 101, 3100-3105. doi:10.1073/pnas.0308724101

[72]   Cole, A.R., Astell, A., Green, C. and Sutherland, C. (2007) Molecular connexions between dementia and diabetes. Neuroscience & Biobehavioral Reviews, 31, N 1046-1063. doi:10.1016/j.neubiorev.2007.04.004

[73]   Mill, J.F., Chao, M.V. and Ishii, D.N. (1985) Insulin, insulin-like growth factor II, and nerve growth factor effects on tubulin mRNA levels and neurite formation. Proceedings of the National Academy of Sciences of the United States of America, 82, 7126-7130. doi:10.1073/pnas.82.20.7126

[74]   Wang, C., Li, Y., Wible, B., Angelides, K.J. and Ishii, D.N. (1992) Effects of insulin and insulin-like growth factors on neurofilament mRNA and tubulin mRNA con tent in human neuroblastoma SH-SY5Y cells. Molecular Brain Research, 13, 289-300. doi:10.1016/0169-328X(92)90212-T

[75]   Tanaka, M., Sawada, M., Yoshida, S., Hanaoka F. and Marunouchi, T. (1995) Insulin prevents apoptosis of external granular layer neurons in rat cerebellar slice cultures. Neuroscience Letters, 199, 37-40. doi:10.1016/0304-3940(95)12009-S

[76]   Craft, S., Asthana, S., Newcomer, J.W., Wilkinson, C.W., Matos, I.T., Baker, L.D., Cherrier, M., Lofgreen, C., La tendresse, S., Petrova, A., Plymate, S., Raskind, M., Grimwood, K. and Veith, R.C. (1999) Enhancement of memory in Alzheimer disease with insulin and soma tostatin, but not glucose. Archives of General Psychiatry, 56, 1135-1140. doi:10.1001/archpsyc.56.12.1135

[77]   Kern, W., Born, J., Schreiber, H. and Fehm, H.L. (1999) Central nervous system effects of intranasally administered insulin during euglycemia in men. Diabetes, 48, 557-563. doi:10.2337/diabetes.48.3.557

[78]   Park, C.R., Seeley, R.J., Craft, S. and Woods, S.C. (2000) Intracerebroventricular insulin enhances memory in a passive-avoidance task. Physiology & Behavior, 68, 509-514. doi:10.1016/S0031-9384(99)00220-6

[79]   Kern, W., Peters, A., Fruehwald-Schultes, B., Deininger, E., Born, J. and Fehm, H.L. (2001) Improving influence of insulin on cognitive functions in humans. Neuroendo crinology, 74, 270-280. doi:10.1159/000054694

[80]   Craft, S., Asthana, S., Cook, D.G., Baker, L.D., Cherrier, M., Purganan, K., Wait, C., Petrova, A., Latendresse, S., Watson, G.S., Newcomer, J.W., Schellenberg, G.D. and Krohn, A.J. (2003) Insulin dose-response effects on memory and plasma amyloid precursor protein in Alzheimer’s disease: Interactions with apolipoprotein E geno type. Psychoneuroendocrinology, 28, 809-822. doi:10.1016/S0306-4530(02)00087-2

[81]   Van Der Heide, L.P., Ramakers, G.M. and Smidt, M.P. (2006) Insulin signaling in the central nervous system: Learning to survive. Progress in Neurobiology, 79, 205-221. doi:10.1016/j.pneurobio.2006.06.003

[82]   Dou, J.T., Chen, M., Dufour, F., Alkon, D.L. and Zhao, W.Q. (2005) Insulin receptor signaling in long-term memory consolidation following spatial learning. Learning & Memory, 12, 646-655. doi:10.1101/lm.88005

[83]   Figlewicz, D.P., Szot, P., Israel, P.A., Payne C., and Dorsa, D.M. (1993) Insulin reduces norepinephrine transporter mRNA in vivo in rat locus coeruleus. Brain Research, 602, 161-164. doi:10.1016/0006-8993(93)90258-O

[84]   Kopf, S. and Baratti, C. (1999) Effects of posttraining administration of insulin on retention of a habituation response in mice: Participation of a central cholinergic mechanism. Neurobiology of Learning and Memory, 71, 50-61. doi:10.1006/nlme.1998.3831

[85]   Zhao, W., Chen, H., Xu, H., Moore, E., Meiri, N., Quon, M.J. and Alkon, D.L. (1999) Brain insulin receptors and spatial memory: Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats. Journal of Biological Chemistry, 274, 34893-34902. doi:10.1074/jbc.274.49.34893

[86]   Wang, Y.T. and Salter, M.W. (1994) Regulation of NMDA receptors by tyrosine kinases and phosphatases. Nature, 369, 233-235. doi:10.1038/369233a0

[87]   Wan, Q., Xiong, Z.G., Man, H.Y., Ackerley, C.A., Braunton, J., Lu, W.Y., Becker, L.E., MacDonald, J.F. and Wang, Y.T. (1997) Recruitment of functional GABA (A) receptors to postsynaptic domains by insulin. Nature, 388, 686-690. doi:10.1038/41792

[88]   Man, H.Y., Lin, J.W., Ju, W.H., Ahmadian, G., Liu, L., Becker, L.E., Sheng, M. and Wang, Y.T. (2000) Regulation of AMPA receptor-mediated synaptic transmission by clathrin-dependent receptor internalization. Neuron, 25, 649-662. doi:10.1016/S0896-6273(00)81067-3

[89]   Kneussel, M. (2002) Dynamic regulation of GABA (A) receptors at synaptic sites. Brain Research Reviews, 39, 74-83. doi:10.1016/S0165-0173(02)00159-5

[90]   Malenka, R.C. (2003) Synaptic plasticity and AMPA receptor trafficking. Annals of the New York Academy of Sciences, 1003, 1-11. doi:10.1196/annals.1300.001

[91]   Huang, C.C. Lee, C.C. and Hsu, K.S. (2004) An investigation into signal transduction mechanisms involved in insulin-induced long-term depression in the CA1 region of the hippocampus. Journal of Neurochemistry, 89, 217-231. doi:10.1111/j.1471-4159.2003.02307.x

[92]   Van Der Heide, L.P., Kamal, A., Artola, A., Gispen, W.H. and Ramakers, G.M. (2005) Insulin modulates hippo campal activity-dependent synaptic plasticity in N-methyl d-aspartate receptor and phosphatidylinositol-3-kinase dependent manner. Journal of Neurochemistry, 94, 1158-1166. doi:10.1111/j.1471-4159.2005.03269.x

[93]   Pirart, J. (1977) Diabetes Mellitus and its degenerative complications: Prospective study of 4400 patients ob served between 1947 and 1973. Diabetes & Metabolism, 3, 245-256.

[94]   Gispen, W.H. and Biessels, G.I. (2000) Cognition and synaptic plasticity in Diabetes Mellitus. Trends in Neurosciences, 23, 542-549. doi:10.1016/S0166-2236(00)01656-8

[95]   Tomlinson, D.R. and Gardiner, N.J. (2008) Glucose neurotoxicity. Nature Reviews Neuroscience, 9, 36-45. doi:10.1038/nrn2294

[96]   Ott, A., Stolk, R.P., Hofman, A., Van Harskamp, F., Grobbee, D.E. and Breteler, M.M. (1996) Association of diabetes mellitus and dementia: The Rotterdam study. Diabetologia, 39, 1392-1397. doi:10.1007/s001250050588

[97]   Ott, A., Stolk, R.P., Van Harskamp, F., Pols, H.A., Hofman, A. and Breteler, M.M. (1999) Diabetes mellitus and the risk of dementia: The Rotterdam study. Neurology, 53, 1937-1942. doi:10.1212/WNL.53.9.1937

[98]   Leibson, C.L., Rocca, W.A., Hanson, V.A., Cha, R., Kokmen, E., O’Brien, P.C. and Palumbo, P.J. (1997) Risk of dementia among persons with diabetes mellitus: A population-based cohort study. American Journal of Epidemiology, 145, 301-308. doi:10.1093/oxfordjournals.aje.a009106

[99]   Fehm, H.L., Perras, B., Smolnik, R., Kern, W. and Born, J. (2000) Manipulating neuropeptidergic pathways in humans: A novel approach to neuropharmacology. European Journal of Pharmacology, 405, 43-54.

[100]   Reger, M.A., Watson, G.S., Green, P.S., Wilkinson, C.W., Baker, L.D., Cholerton, B., Fishel, M.A., Plymate, S.R., Breitner, J.C., DeGroodt, W., Mehta, P. and Craft, S. (2008) Intranasal insulin improves cognition and modu lates β-amyloid in early AD. Neurology, 70, 440-448. doi:10.1212/01.WNL.0000265401.62434.36

[101]   Schafer, M. and Erdo, S.L., (1991) Development of glutamate neurotoxicity in cortical cultures: Induction of vulnerability by insulin. Developmental Brain Research, 62, 293-296. doi:10.1016/0165-3806(91)90179-M

[102]   González, C., Farías, G. and Maccioni, R.B. (1998) Modification of tau to an Alzheimer’s type protein interferes with its interaction with microtubules. Cell and Molecular Biology (Noisy-le-grand), 44, 1117-1127.

[103]   Freude, S., Plum, L., Schnitker, J., Leeser, U., Udelhoven, M., Krone, W., Bruning, J.C. and Schubert, M. (2005) Peripheral hyperinsulinemia promotes tau phosphorrylation in vivo. Diabetes, 54, 3343-3348. doi:10.2337/diabetes.54.12.3343

[104]   Qiu, W.Q., Ye, Z., Kholodenko, D., Seubert, P. and Selkoe, D.J. (1997) Degradation of amyloid β-protein by a metalloprotease secreted by microglia and other neural and non-neural cells. Journal of Biological Chemistry, 272, 6641-6646. doi:10.1074/jbc.272.10.6641

[105]   Qiu, W.Q., Walsh, D.M., Ye, Z., Vekrellis, K., Zhang, J., Podlisny, M.B., Rosner, M.R., Safavi, A., Hersh, L.B. and Selkoe, D.J. (1998) Insulin-degrading enzyme regulates extracellular levels of amyloid β-protein by deg radation. Journal of Biological Chemistry, 273, 32730-32738. doi:10.1074/jbc.273.49.32730

[106]   Gasparini, L., Gouras, G.K., Wang, R., Gross, R.S., Beal, M.F., Greengard, P. and Xu, H. (2001) Stimulation of beta-amyloid precursor protein trafficking by insulin re duces intraneuronal beta-amyloid and requires mitogen activated protein kinase signaling. Journal of Neuroscience, 21, 2561-2570.

[107]   Perez, A., Morelli, L., Cresto, J.C. and Castano, E.M. (2000) Degradation of soluble amyloid beta peptides 1-40, 1-42, and the Dutch variant 1-40Q by insulin degrading enzyme from Alzheimer disease and control brains. Neurochemical Research, 25, 247-255.

[108]   Farris, W., Mansourian, S., Chang, Y., Lindsley, L., Eckman, E.A., Frosch, M.P., Eckman, C.B., Tanzi, R.E., Selkoe, D.J. and Guenette, S. (2003) Insulin-degrading enzyme regulates the levels of insulin, amyloid beta protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proceedings of the National Academy of Sciences of the United States of America, 100, 4162-4167. doi:10.1073/pnas.0230450100

[109]   Mayeux, R., Honig, L.S., Tang, M.X., Manly, J., Stern, Y. Schupf, N. and Mehta, P.D. (2003) Plasma Aβ40 and Aβ42 and Alzheimer’s disease: Relation to age, mortality, and risk. Neurology, 61, 1185-1190. doi:10.1212/01.WNL.0000091890.32140.8F

[110]   Cook, D.G., Leverenz, J.B., McMillan, P.J., Kulstad, J.J., Ericksen, S., Roth, R.A., Schellenberg, G.D., Jin, L.W., Kovacina, K.S. and Craft, S. (2003) Reduced hippocam pal insulin-degrading enzyme in late-onset Alzheimer’s disease is associated with the apolipoprotein E-epsilon4 allele. American Journal of Patholology, 162, 313-319. doi:10.1016/S0002-9440(10)63822-9

[111]   Ho, L., Qin, W., Pompl, P.N., Xiang, Z., Wang, J., Zhao, Z., Peng, Y., Cambareri, G., Rocher, A., Mobbs, C.V., Hof, P.R. and Pasinetti, G.M. (2004) Diet-induced Insulin Resistance promotes amyloidosis in a transgenic mouse model of Alzheimer’s disease. Federation of American Societies for Experimental Biology, 18, 902-904.

[112]   Vanhanen, M., Koivisto, K., Kuusisto, J., Mykkinen, L., Helkala, E.L., H?nninen, T., Riekkinen Sr., P., Soininen, H. and Laakso, M. (1998) Cognitive function in an elderly population with persistent impaired glucose tolerance. Diabetes Care, 21, 398-402. doi:10.2337/diacare.21.3.398

[113]   Luchsinger, J.A. Tang, M.X., Shea, S. and Mayeux, R. (2004) Hyperinsulinemia and risk of Alzheimer disease. Neurology, 63, 1187-1192. doi:10.1212/01.WNL.0000140292.04932.87

[114]   Wallum, B.J. Taborsky Jr. G.I., Porte Jr., D., Figlewicz, D.P., Jacobson, L., Beard, J.C., Ward, W.K. and Dorsa, D. (1987) Cerebrospinal fluid insulin levels increase during intravenous insulin infusions in man. Journal of Clinical Endocrinology and Metabolism, 64, 190-194. doi:10.1210/jcem-64-1-190

[115]   Kaiyala, K.J., Prigeon, R.L., Kahn, S.E., Woods, S.C. and Schwartz, M.W. (2000) Obesity induced by a high-fat diet is associated with reduced brain insulin transport in dogs. Diabetes, 49, 1525-1533.

[116]   Strachan, M.W., Deary, I.J., Ewing, F.M. and Frier, B.M. (1997) Is type II diabetes associated with an increased risk of cognitive dysfunction? A critical review of published studies. Diabetes Care, 20, 438-445. doi:10.2337/diacare.20.3.438

[117]   Caballero, A.E. (2004) Endothelial dysfunction, inflammation, and insulin resistance: A focus on subjects at risk for type II diabetes. Current Diabetes Reports, 4, 237-246. doi:10.1007/s11892-004-0074-9

[118]   Rojo, L.E., Fernández, J.A., Maccioni, A.A., Jimenez, J.M. and Maccioni, R.B. (2008) Neuroinflammation: Implications for the pathogenesis and molecular diagnosis of Alzheimer’s disease. Archives of Medical Research, 39, 1-16. doi:10.1016/j.arcmed.2007.10.001

[119]   Aggarwal, S., Gollapudi, S. and Gupta, S. (1999) Increased TNF-α-induced apoptosis in lymphocytes from aged humans: Changes in TNF-α receptor expression and activation of caspases. Journal of Immunology, 162, 2154-2161.

[120]   Dzienis-Straczkowska, S., Straczkowski, M., Szelachow ska, M., Stepien, A., Kowalska, I. and Kinalska, I. (2003) Soluble tumor necrosis factor-alpha receptors in young obese subjects with normal and impaired glucose toler ance. Diabetes Care, 26, 875-880. doi:10.2337/diacare.26.3.875

[121]   Zhao, M., Cribbs, D.H., Anderson, A.J., Cummings, B.J., Su, J.H., Wasserman, A.J. and Cotman, C.W. (2003) The induction of the TNF-α death domain signaling pathway in Alzheimer’s disease brain. Neurochemical Research, 28, 307-318. doi:10.1023/A:1022337519035

[122]   Jagust, W.J., Seab, J.P., Huesman, R.H., Valk, P.E., Mathis, C.A., Reed, B.R., Coxson, P.G. and Budinger, T.F. (1991) Diminished glucose transport in Alzheimer’s disease: Dynamic PET studies. Journal of Cerebral Blood Flow and Metabolism, 11, 323-330. doi:10.1038/jcbfm.1991.65

[123]   Gibson, G.E. Petersen, C. and Jenden, D.J. (1981) Brain acetylcholine synthesis decline with senescence. Science, 213, 674-676. doi:10.1126/science.7256270

[124]   Bigl, V., Arendt, T., Fischer, S., Werner, M. and Arendt, A. (1987) The cholinergic system in aging. Gerontology, 33, 172-180.

[125]   Prapong, T., Buss, J., Hsu, W.H., Heine, P., West Green lee, H. and Uemura, E. (2002) Amyloid beta-peptide de creases neuronal glucose uptake despite causing increase in GLUT3 mRNA transcription and GLUT3 translocation to the plasma membrane. Experimental Neurology, 174, 253-258. doi:10.1006/exnr.2001.7861

[126]   Zhu, X., Perry, G. and Smith, M.A. (2005) Insulin signaling, Diabetes Mellitus and risk of Alzheimer disease. Journal of Alzheimer’s Disease, 7, 81-84.

[127]   Fernández, J., Rojo, L., Kulji?, R.O. and Maccioni, R.B. (2008) The damage signals hypothesis of Alzheimer’s disease. Journal of Alzheimer’s Disease, 14, 329-333.

[128]   Moreira, P.I. Santos, M.S. Seica, R. and Oliveira, C.R. (2007) Brain mitochondrial dysfunction as a link between Alzheimer’s disease and diabetes. Journal of Neurological Sciences, 257, 206-214.

[129]   Xie, L., Helmerhorst, E., Taddei, K., Plewright, B., Van Bronswijk, W. and Martins, R. (2002) Alzheimer’s beta-amyloid peptides compete for insulin binding to the insulin receptor. Journal of Neuroscience, 22, Article ID: RC221.

[130]   Steen, E., Terry, B.M., Rivera, E.J., Cannon, J.L., Neely, T.R., Tavares, R., Xu, X.J., Wands, J.R. and de la Monte, S.M. (2005) Impaired insulin and insulin-like growth factor expression and signalling mechanisms in Alzheimer’s disease: Is this type 3 diabetes? Journal of Alzheimer’s Disease, 7, 63-80.

[131]   Rivera, E.J., Goldin, A., Fulmer, N., Tavares, R., Wands J.R. and de la Monte, S.M. (2005) Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’s disease: Link to brain reductions in acetylcholine. Journal of Alzheimer’s Disease, 8, 247-268.

[132]   Steven, E.S., Jongsoon, L. and Allison, B.G. (2006) In flammation and Insulin Resistance. Journal of Clinical Investigation, 116, 1793-1801. doi:10.1172/JCI29069

[133]   R?der, H.M. and Ingram, V.M. (1991) Two novel kinases phosphorylate tau and the KSP site of heavy neurofilament subunits in high stoichiometric ratios. Journal of Neuroscience, 11, 3325-3343.

[134]   Bush, M.L., Miyashiro, J.S. and Ingram, V.M. (1995) Activation of a neurofilament kinase, a taukinase, and a tau phosphatase by decreased ATP levels in nerve growth factor-differentiated PC12 cells. Proceedings of the National Academy of Sciences of the United States of America, 92, 1861-1865. doi:10.1073/pnas.92.6.1861

[135]   Hong, M. and Lee, V.M. (1997) Insulin and insulin-like growth factor-1 regulate tau phosphorylation in cultured human neurons. Journal of Biological Chemistry, 272, 19547-19553. doi:10.1074/jbc.272.31.19547

[136]   Rojo, L., Sj?berg, M.K., Hernández, P., Zambrano, C. and Maccioni, R.B. (2006) Roles of cholesterol and lipids in the etiopathogenesis of Alzheimer’s disease. Journal of Biomedicine & Biotechnology, 2006, Article ID: 73976.

[137]   Gasparini, L., Netzer, W.J. Greengard, P. and Xu, H. (2002) Does insulin dysfunction play a role in Alzheimer’s disease? Trends in Pharmacological Sciences, 23, 288-293. doi:10.1016/S0165-6147(02)02037-0

[138]   Cross, D.A., Alessi, D.R., Cohen, P., Andjelkovich, M. and Hemmings, B.A. (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature, 378, 785-789. doi:10.1038/378785a0

[139]   Fisher, T.L. and White, M.F. (2004) Signaling pathways: The benefits of good communication. Current Biology, 14, R1005-R1007. doi:10.1016/j.cub.2004.11.024

[140]   Dudek, H., Datta, S.R., Franke, T.F., Birnbaum, M.J., Yao, R., Cooper, G.M., Segal, R.A., Kaplan, D.R. and Greenberg, M.E. (1997) Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science, 275, 661-665. doi:10.1126/science.275.5300.661

[141]   Zhou, H., Li, X.M., Meinkoth, J. and Pittman, R.N. (2000) Akt regulates cell survival and apoptosis at a postmito chondrial level. Journal of Cell Biology, 151, 483-494. doi:10.1083/jcb.151.3.483

[142]   Zhou, H., Summers, S.A., Birnbaum, M.J. and Pittman, R.N. (1998) Inhibition of Akt kinase by cell-permeable ceramide and its implications for ceramide-induced apoptosis. Journal of Cell Biology, 273, 16568-16575.

[143]   Martin, D., Salinas, M., Lopez-Valdaliso, R., Serrano, E., Recuero, M. and Cuadrado, A. (2001) Effect of the Alzheimer amyloid fragment Aβ (25-35) on Akt/PKB kinase and survival of PC12 cells. Journal of Neurochemistry, 78, 1000-1008. doi:10.1046/j.1471-4159.2001.00472.x

[144]   Maccioni, R.B., Otth, C., Concha, I.I. and Mu?oz, J.P. (2001) The protein kinase Cdk5. Structural aspects, roles in neurogenesis and involvement in Alzheimer’s pathology. European Journal of Biochemistry, 268, 1518-1527. doi:10.1046/j.1432-1327.2001.02024.x

[145]   Alvarez, A., Mu?oz, J.P. and Maccioni, R.B. (2001) A Cdk5-p35 Stable Complex is involved in the β-Amy loid-induced deregulation of Cdk5 activity in hippocam pal neurons. Experimental Cell Research, 264, 266-274. doi:10.1006/excr.2001.5152

[146]   Alvarez, A., Toro, R., Caceres, A. and Maccioni, R.B. (1999) Inhibition of tau phosphorylating protein kinase cdk5 prevents beta-amyloid induced neuronal death. Federation of European Biochemical Societies Letters, 459, 421-426. doi:10.1016/S0014-5793(99)01279-X

[147]   Shiurba, R.A., Ishiguro, K., Takahashi, M., Sato, K., Spooner, E.T., Mercken, M., Yoshida, R., Wheelock, T.R., Yanagawa, H., Imahori, K. and Nixon, R.A. (1996) Immunocytochemistry of tau phosphoserine 413 and tau protein kinase I in Alzheimer pathology. Brain Research, 737, 119-132.

[148]   Leroy, K., Boutajangout, A., Authelet, M., Woodgett, J.R., Anderton, B.H. and Brion, J.P. (2002) The active form of glycogen synthase kinase-3beta is associated with granulovacuolar degeneration in neurons in Alzheimer’s disease. Acta Neuropathologica, 103, 91-99. doi:10.1007/s004010100435

[149]   Ryu, B.R., Ko, H.W., Jou, I., Noh, J.S. and Gwag, B.J. (1999) Phosphatidylinositol 3-kinase-mediated regulation of neuronal apoptosis and necrosis by insulin and IGF-I. Journal of Neurobiology, 39, 536-546. doi:10.1002/(SICI)1097-4695(19990615)39:4<536::AID-NEU7>3.0.CO;2-J

[150]   Hebert, L.E., Scherr, P.A., Bienias, J.L., Bennett, D.A. and Evans, D.A. (2003) Alzheimer disease in the US population: Prevalence estimates using the 2000 Census. Archives of Neurology, 60, 1119-1122. doi:10.1001/archneur.60.8.1119

[151]   Jorm, A.F. (1991) Cross-national comparisons of the occurrence of Alzheimer’s and vascular dementias. European Archives of Psychiatry and Clinical Neuroscience, 240, 218-222.

[152]   Walsh, D.M. and Selkoe, D.J. (2004) Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron, 44, 181-193. doi:10.1016/j.neuron.2004.09.010

[153]   Tan, J., Town, T., Paris, D., Mori, T., Suo, Z.M., Crawford, F., Mattson, M.P., Flavell, R.A. and Mullan, M. (1999) Microglial activation resulting from CD40-CD40L interaction after beta-amyloid stimulation. Science, 286, 2352-2355. doi:10.1126/science.286.5448.2352

[154]   American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders. 4th Edition, American Psychiatric Association, Washington DC.

[155]   Kawas, C.H. (2003) Clinical practice. Early Alzheimer’s disease. New England Journal of Medicine, 349, 1056 1063. doi:10.1056/NEJMcp022295

[156]   McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D. and Stadlan, E.M. (1984) Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology, 34, 939-944. doi:10.1212/WNL.34.7.939

[157]   Chui, H. and Lee, A.E. (2002) Clinical criteria for dementia subtypes. Evidence-based dementia practice, Blackwell Science, Oxford.

[158]   Greene, J.D., Baddeley, A.D. and Hodges, J.R. (1996) Analysis of the episodic memory deficit in early Alzheimer’s disease: Evidence from the doors and people test. Neuropsychologia, 34, 537-551. doi:10.1016/0028-3932(95)00151-4

[159]   Pillon, B., Deweer, B., Agid, Y. and Dubois, B. (1993) Explicit memory in Alzheimer’s, Huntington’s, and Parkinson’s diseases. Archives of Neurology, 50, 374-379. doi:10.1001/archneur.1993.00540040036010

[160]   Price, B.H., Gurvit, H., Weintraub, S., Geula, C., Leim kuhler, E. and Mesulam, M. (1993) Neuropsychological patterns and language deficits in 20 consecutive cases of autopsy-confirmed Alzheimer’s disease. Archives of Neurology, 50, 931-937. doi:10.1001/archneur.1993.00540090038008

[161]   Esteban-Santillan, C. Praditsuwan, R., Ueda, H. and Geldmacher, D.S. (1998) Clock drawing test in very mild Alzheimer’s disease. Journal of American Geriatrics Society, 46, 1266-1269.

[162]   Kirk, A. and Kertesz, A. (1991) On drawing impairment in Alzheimer’s disease. Archives of Neurology, Vol. 48, 73-77. doi:10.1001/archneur.1991.00530130083024

[163]   Galasko, D., Bennett, D., Sano, M., Ernesto, C., Thomas, R., Grundman, M. and Ferris, S. (1997) An inventory to assess activities of daily living for clinical trials in Alzheimer’s disease. The Alzheimer’s disease Cooperative Study. Alzheimer’s disease and Associated Disorders, 11, S33-S39.

[164]   Mega, M.S., Cummings, J.L., Fiorello, T. and Gornbein, J. (1996) The spectrum of behavioral changes in Alzheimer’s disease. Neurology, 46, 130-135. doi:10.1212/WNL.46.1.130

[165]   Knopman, D.S., DeKosky, S.T., Cummings, J.L., Chui, H., Corey-Bloom, J., Relkin, N., Small, G.W., Miller, B. and Stevens, J.C. (2001) Practice parameter: Diagnosis of dementia (an evidence-based review): Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology, 56, 1143-1153. doi:10.1212/WNL.56.9.1143

[166]   Silverman, D.H., Small, G.W., Chang, C.Y., Lu, C.S., Kung de Aburto, M.A., Chen, W., Czernin, J., Rapoport, S.I., Pietrini, P., Alexander, G.E., Schapiro, M.B., Jagust, W.J., Hoffman, J.M., Welsh-Bohmer, K.A., Alavi, A., Clark, C.M., Salmon, E., de Leon, M.J., Mielke, R., Cummings, J.L., Kowell, A.P., Gambhir, S.S., Hoh, C.K. and Phelps, M.E. (2001) Positron emission tomography in evaluation of dementia: Regional brain metabolism and long-term outcome. Journal of American Medical Association, 286, 2120-2127. doi:10.1001/jama.286.17.2120

[167]   Cummings, J.L. (2004) Alzheimer’s disease. New Eng land Journal of Medicine, 351, 56-67. doi:10.1056/NEJMra040223

[168]   Hardy, J. and Selkoe, D.J. (2002) The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science, 297, 353-356. doi:10.1126/science.1072994

[169]   Butterfield, D.A., Castegna, A., Lauderback, C.M. and Drake, J. (2002) Evidence that amyloid beta peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiology of Aging, 23, 655-664. doi:10.1016/S0197-4580(01)00340-2

[170]   Carter, D.B. Dunn, E., McKinley, D.D., Stratman, N.C., Boyle, T.P. Kuiper, S.L. Oostveen, J.A. Weaver, R.J. Boller, J.A. and Gurney, M.E. (2001) Human apolipo protein E4 accelerates beta amyloid deposition in APPsw transgenic mouse brain. Annals of Neurology, 50, 468 475. doi:10.1002/ana.1134

[171]   Hsiao, K., Chapman, P., Nilsen, S., Eckman, C., Harigaya, Y., Younkin, S., Yang, F. and Cole, G., (1996) Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science, 274, 99-102. doi:10.1126/science.274.5284.99

[172]   Mesulam, M.M. (1999) Neuroplasticity failure in Alzheimer’s disease: Bridging the gap between plaques and tangles. Neuron, 24, 521-529. doi:10.1016/S0896-6273(00)81109-5

[173]   Hock, C., Konietzko, U., Streffer, J.R., Tracy, J., Signorell, A., Müller-Tillmanns, B., Lemke, U., Henke, K., Moritz, E., Garcia, E., Wollmer, M.A., Umbricht, D., de Quervain, D.J., Hofmann, M., Maddalena, A., Papassoti ropoulos, A. and Nitsch, R.M. (2003) Antibodies against beta-amyloid slow cognitive decline in Alzheimer’s disease. Neuron, 38, 547-554. doi:10.1016/S0896-6273(03)00294-0

[174]   Pappas, B.A., Bayley, P.J., Bui, B.K., Hansen, L.A. and Thal, L.J. (2000) Choline acetyltransferase activity and cognitive domain scores of Alzheimer’s patients. Neurobiology of Aging, 21, 11-17. doi:10.1016/S0197-4580(00)00090-7

[175]   Palmer, A.M., Stratmann, G.C., Procter, A.W. and Bowen, D.M. (1988) Possible neurotransmitter basis of behavioral changes in Alzheimer’s disease. Annals of Neurology, 23, 616-620. doi:10.1002/ana.410230616

[176]   Aisen, P.S. (1997) Inflammation and Alzheimer’s disease: Mechanisms and therapeutic strategies. Gerontology, 43, 143-149.

[177]   Perlmutter, L.S. Barron, E. and Chui, H.C. (1990) Morphologic association between microglia and senile plaque amyloid in Alzheimer’s disease. Neuroscience Letters, 119, 32-36. doi:10.1016/0304-3940(90)90748-X

[178]   McGeer, P.L., Kawamata, T., Walker, D.G., Akiyama, H., Tooyama, I. and McGeer, E.G. (1993) Microglia in de generative neurological disease. Glia, 7, 84-92. doi:10.1002/glia.440070114

[179]   Fetler, L. and Amigorena, S. (2005) Neuroscience. Brain under surveillance: The microglia patrol. Science, 309, 392-393. doi:10.1126/science.1114852

[180]   Liu, B. and Hong, J.S. (2003) Role of Microglia in inflammation-mediated neurodegenerative diseases: Mechanisms and strategies for therapeutic intervention. Journal of Pharmacology and Experimental Therapeutics, 304, 1-7. doi:10.1124/jpet.102.035048

[181]   Kreutzberg, G.W. (1996) Microglia: A sensor for pathological events in the CNS. Trends in Neurosciences, 19, 312-318. doi:10.1016/0166-2236(96)10049-7

[182]   Griffin, W.S., Sheng, J.G., Royston, M.C., Gentleman, S.M., McKenzie, J.E., Graham, D.I., Roberts, G.W. and Mrak, R.E. (1998) Glial-neuronal interactions in Alzheimer’s disease: The potential role of a “cytokine cycle” in disease progression. Brain Pathology, 8, 65-72. doi:10.1111/j.1750-3639.1998.tb00136.x

[183]   D’Andrea, M.R., Cole, G.M. and Ard, M.D. (2004) The microglial phagocytic role with specific plaque types in the Alzheimer disease brain. Neurobiology of Aging, 25, 675-683. doi:10.1016/j.neurobiolaging.2003.12.026

[184]   Dickson, D.W., Lee, S.C., Mattiace, L.A., Yen, S.H. and Brosnan, C. (1993) Microglia and cytokines in neurological disease, with special reference to AIDs and Alzheimer’s disease. Glia, 7, 75-83. doi:10.1002/glia.440070113

[185]   Barger, S.W. and Harmon, A.D. (1997) Microglial activation by Alzheimer amyloid precursor protein and modulation by apolipoprotein E. Nature, 388, 878-881. doi:10.1038/42257

[186]   DeGiorgio, L.A., Shimizu, Y., Chun, H.S., Kim, Y.S., Sugama, S., Son, J.H., Joh, T.H. and Volpe, B.T. (2002) Amyloid precursor protein gene disruption attenuates de generation of substantia nigra compacta neurons follow ingaxotomy. Brain Research, 938, 38-44.

[187]   Permanne, B., Adessi, C., Saborio, G.P., Fraga, S., Frossard, M.J., Van Dorpe, J., Dewachter, I., Banks, W.A., Van Leuven, F. and Soto, C. (2002) Reduction of amyloid load and cerebral damage in a transgenic mouse model of Alzheimer’s disease by treatment with a β-sheet breaker peptide. Federation of American Societies for Experimental Biology, 16, 860-862.

[188]   Combs, C.K., Karlo, J.C., Kao, S.C. and Landreth, G.E. (2001) β-amyloid stimulation of microglia and monocytes results in TNFα-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. Journal of Neuroscience, 21, 1179-1188.

[189]   Ho, G.J., Drego, R., Hakimian, E. and Masliah, E. (2005) Mechanisms of cell signaling and inflammation in Alzheimer’s disease. Current Drug Targets-Inflammation and Allergy, 4, 247-256. doi:10.2174/1568010053586237

[190]   Bach, J.H., Chae, H.S., Rah, J.C., Lee, M.W., Park, C.H., Choi, S.H., Choi, J.K., Lee, S.H., Kim, Y.S., Kim, K.Y., Lee, W.B., Suh, Y.H. and Kim, S.S. (2001) C-terminal fragment of amyloid precursor protein induces astrocytosis. Journal of Neurochemistry, 78, 109-120. doi:10.1046/j.1471-4159.2001.00370.x

[191]   Beglopoulos, V., Sun, X., Saura, C.A., Lemere, C.A., Kim, R.D. and Shen, J. (2004) Reduced β-amyloid production and increased inflammatory responses in presenilin conditional knock-out mice. Journal of Biological Chemistry, 279, 46907-46914. doi:10.1074/jbc.M409544200

[192]   Brunkan, A.L. and Goate, A.M. (2005) Presenilin function and g-secretase activity. Journal of Neurochemistry, 93, 769-792. doi:10.1111/j.1471-4159.2005.03099.x

[193]   Frautschy, S.A., Yang, F., Irrizarry, M., Hyman, B., Saido, T.C., Hsiao, K. and Cole, G.M. (1998) Microglial response to amyloid plaques in APPsw transgenic mice. American Journal of Pathology, 152, 307-317.

[194]   Wyss-Coray, T., Loike, J.D., Brionne, T.C., Lu, E., Anankov, R., Yan, F., Silverstein, S.C. and Husemann, J. (2003) Adult mouse astrocytes degrade amyloid-β in vitro and in situ. Nature Medicine, 9, 453-457. doi:10.1038/nm838

[195]   Rossner, S., Lange-Dohna, C., Zeitschel, U. and Perez Polo, J.R. (2005) Alzheimer’s disease β-secretase BACE1 is not a neuron-specific enzyme. Journal of Neuroche mistry, 92, 226-234. doi:10.1111/j.1471-4159.2004.02857.x

[196]   Nagele, R.G., D’Andrea, M.R., Lee, H., Venkataraman, V. and Wang, H.Y. (2003) Astrocytes accumulate Aβ42 and give rise to astrocytic amyloid plaques in Alzheimer disease brains. Brain Research, 971, 197-209. doi:10.1016/S0006-8993(03)02361-8

[197]   Heneka, M.T., Wiesinger, H., Dumitrescu-Ozimek, L., Riederer, P., Feinstein, D.L. and Klockgether, T. (2001) Neuronal and glial coexpression of argininosuccinate synthetase and inducible nitric oxide synthase in Alzheimer disease. Journal of Neuropathology and Experimental Neurology, 60, 906-916.

[198]   Nunomura, A., Perry, G., Aliev, G., Hirai, K., Takeda, A., Balraj, E.K., Jones, P.K., Ghanbari, H., Wataya, T., Shimohama, S., Chiba, S., Atwood, C.S., Petersen, R.B. and Smith, M.A. (2001) Oxidative damage is the earliest event in Alzheimer disease. Journal of Neuropathology and Experimental Neurology, 60, 759-767.

[199]   Cagnin, A., Brooks, D.J., Kennedy, A.M., Gunn, R.N., Myers, R., Turkheimer, F.E., Jones, T. and Banati, R.B. (2001) In-vivo measurement of activated microglia in dementia. Lancet, 358, 461-567. doi:10.1016/S0140-6736(01)05625-2

[200]   Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G.M., Cooper, N.R., Eikelenboom, P., Emmerling, M., Fiebich, B.L., Finch, C.E., Frautschy, S., Griffin, W.S., Hampel, H., Hull, M., Landreth, G., Lue, L., Mrak, R., Mackenzie, I.R., McGeer, P.L., O’Banion, M.K., Pachter, J., Pasinetti, G., Plata-Salaman, C., Rogers, J., Rydel, R., Shen, Y., Streit, W., Strohmeyer, R., Tooyoma, I., Van Muiswinkel, F.L., Veerhuis, R., Walker, D., Web ster, S., Wegrzyniak, B., Wenk, G. and Wyss-Coray, A. (2000) Inflammation and Alzheimer’s disease. Neurobiology of Aging, 21, 383-421. doi:10.1016/S0197-4580(00)00124-X

[201]   Nicoll, J.A., Mrak, R.E., Graham, D.I., Steward, J., Wil cock, G., MacGowan, S., Esiri, M.M., Murray, L.S., De war, D., Love, S., Moss, T. and Griffin, W.S. (2000) Association of interleukin-1 gene polymorphisms with Alzheimer’ disease. Annals of Neurology, 47, 365-368. doi:10.1002/1531-8249(200003)47:3<365::AID-ANA13>3.0.CO;2-G

[202]   Papassotiropoulos, A., Bagli, M., Jessen, F., Bayer, T.A., Maier, W., Rao, M.L. and Heun, R. (1999) Genetic variation of the inflammatory cytokine IL-6 delays the initial onset, and reduces the risk for sporadic Alzheimer’s disease. Annals of Neurology, 45, 666-668. doi:10.1002/1531-8249(199905)45:5<666::AID-ANA18>3.0.CO;2-3

[203]   McCusker, S.M., Curran, M.D., Dynan, K.B., McCullagh, C.D., Urquhart, D.D., Middleton, D., Patterson, C.C., Mcllroy, S.P. and Passmore, A.P. (2001) Association between polymorphism in regulatory region of gene en coding TNF-α and risk of Alzheimer disease and vascular dementia: A case-control study. Lancet, 357, 436-439. doi:10.1016/S0140-6736(00)04008-3

[204]   Perry, R.T., Collins, J.S., Wiener, H., Acton, R. and Go, R.C. (2001) The role of TNF and its receptors in Alzheimer’s disease. Neurobiology of Aging, 22, 873-883. doi:10.1016/S0197-4580(01)00291-3

[205]   Kamboh, M.I., Sanghera, D.K., Ferrell, R.E. and De Kosky, S.T. (1995) APOE*4-associated Alzheimer’s disease risk is modified by alpha 1-antichymotrypsin polymorphism. Nature Genetics, 10, 486-488. doi:10.1038/ng0895-486

[206]   Benzing, W.C., Wujek, J.R., Ward, E.K., Shaffer, D., Ashe, K.H., Younkin, S.G. and Brunden, K.R. (1999) Evidence for glial-mediated inflammation in aged APPSW transgenic mice. Neurobiology of Aging, 20, 581-589. doi:10.1016/S0197-4580(99)00065-2

[207]   Sly, L.M., Krzesicki, R.F., Brashler, J.R., Buhl, A.E., McKinley, D.D., Carter, D.B. and Chin, J.E. (2001) Endogenous brain cytokine mRNA and inflammatory responses to lipopolysaccharide are elevated in the Tg2576 transgenic mouse model of Alzheimer’s disease. Brain Research Bulletin, 56, 581-588. doi:10.1016/S0361-9230(01)00730-4

[208]   Apelt J. and Schliebs, R. (2001) β-amyloid-induced glial expression of both pro and anti-inflammatory cytokines in cerebral cortex of aged transgenic Tg2576 mice with Alzheimer plaque pathology. Brain Research, 894, 21-30. doi:10.1016/S0006-8993(00)03176-0

[209]   Matsuoka, Y., Picciano, M., Malester, B., LaFrancois, J., Zehr, C., Daeschner, J.M., Olschowka, J.A., Fonseca, M.I., O’Banion, M.K., Tenner, A.J., Lemer, C.A. and Duff, K. (2001) Inflammatory responses to amyloidosis in a transgenic mouse model of Alzheimer’s disease. American Journal of Pathology, 158, 1345-1354. doi:10.1016/S0002-9440(10)64085-0

[210]   Bellucci, A., Westwood, A.J., Ingram, E., Casamenti, F. Goedert, M. and Spillantini, M.G. (2004) Induction of inflammatory mediators and microglial activation in mice transgenic for mutant human P301S tau protein. American Journal of Pathology, 165, 1643-1652.

[211]   Sastre, M., Klockgether, T. and Heneka, M.T. (2006) Contribution of inflammatory processes to Alzheimer’s disease: Molecular mechanisms. International Journal of Developmental Neuroscience, 24, 167-176. doi:10.1016/S0002-9440(10)63421-9

 
 
Top